Donald B Dingwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3991453/publications.pdf

Version: 2024-02-01

451 papers

23,952 citations

76 h-index

8181

126 g-index

471 all docs

471 docs citations

471 times ranked

8299 citing authors

4.4	1,257
1.3	454
4.4	334
0.8	311
12.6	310
27.8	289
3.1	286
1,9	281
2.1	257
3.9	254
3.3	244
27.8	238
4.4	230
3.0	215
2.8	213
3.1	211
27.8	210
	4.4 0.8 12.6 27.8 3.1 1.9 2.1 3.9 3.3 27.8 4.4 3.0 2.8 3.1

 $Near-infrared\ spectroscopic\ determination\ of\ water\ species\ in\ glasses\ of\ the\ system\ MAlSi3O8\ (M=Li,)\ Tj\ ETQq0\ 0\ 0\ gBT\ /Oyerlock\ 10$

18

#	Article	IF	CITATIONS
19	Permeability and degassing of dome lavas undergoing rapid decompression: An experimental determination. Bulletin of Volcanology, 2005, 67, 526-538.	3.0	189
20	Non-Arrhenian multicomponent melt viscosity: a model. Earth and Planetary Science Letters, 2003, 208, 337-349.	4.4	188
21	Experimental petrochemistry of some highly siderophile elements at high temperatures, and some implications for core formation and the mantle's early history. Chemical Geology, 1995, 120, 255-273.	3.3	187
22	Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochimica Et Cosmochimica Acta, 2012, 79, 20-40.	3.9	177
23	Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions. Bulletin of Volcanology, 2003, 65, 8-14.	3.0	176
24	Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochimica Et Cosmochimica Acta, 2005, 69, 2847-2860.	3.9	175
25	Shear viscosities of CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2 liquids: Implications for the structural role of aluminium and the degree of polymerisation of synthetic and natural aluminosilicate melts. Geochimica Et Cosmochimica Acta, 2004, 68, 5169-5188.	3.9	172
26	The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochimica Et Cosmochimica Acta, 2011, 75, 3214-3236.	3.9	166
27	Non-Newtonian rheological law for highly crystalline dome lavas. Geology, 2007, 35, 843.	4.4	164
28	Seismogenic lavas and explosive eruption forecasting. Nature, 2008, 453, 507-510.	27.8	161
29	Viscosity, fragility, and configurational entropy of melts along the join SiO ₂ -NaAlSiO ₄ . American Mineralogist, 1997, 82, 979-990.	1.9	159
30	Microstructural controls on the physical and mechanical properties of edificeâ€forming andesites at Volcán de Colima, Mexico. Journal of Geophysical Research: Solid Earth, 2014, 119, 2925-2963.	3.4	155
31	Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt. American Mineralogist, 2000, 85, 33-40.	1.9	152
32	Glass transition temperatures of natural hydrous melts: a relationship with shear viscosity and implications for the welding process. Journal of Volcanology and Geothermal Research, 2005, 142, 105-118.	2.1	150
33	Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study. Geochimica Et Cosmochimica Acta, 1992, 56, 701-707.	3.9	144
34	Liquid Immiscibility and the Evolution of Basaltic Magma. Journal of Petrology, 2007, 48, 2187-2210.	2.8	140
35	Solubilities of Pt and Rh in a haplobasaltic silicate melt at 1300°C. Geochimica Et Cosmochimica Acta, 1999, 63, 2439-2449.	3.9	138
36	The combined effects of water and fluorine on the viscosity of silicic magmas. Geochimica Et Cosmochimica Acta, 2004, 68, 5159-5168.	3.9	135

#	Article	IF	Citations
37	The effect of oxidation state on the viscosity of melts in the system Na2O-FeO-Fe2O3-SiO2. Geochimica Et Cosmochimica Acta, 1987, 51, 195-205.	3.9	132
38	Effects of F, B2O3 and P2O5 on the solubility of water in haplogranite melts compared to natural silicate melts. Contributions To Mineralogy and Petrology, 1993, 113, 492-501.	3.1	132
39	Permeability control on magma fragmentation. Geology, 2008, 36, 399.	4.4	130
40	A rheological investigation of vesicular rhyolite. Journal of Volcanology and Geothermal Research, 1992, 50, 307-322.	2.1	129
41	Water solubility in aluminosilicate melts of haplogranite composition at 2 kbar. Chemical Geology, 1992, 96, 289-302.	3.3	126
42	An expanded non-Arrhenian model for silicate melt viscosity: A treatment for metaluminous, peraluminous and peralkaline liquids. Chemical Geology, 2006, 229, 42-56.	3.3	126
43	The influence of excess alkalis on the viscosity of a haplogranitic melt. American Mineralogist, 1995, 80, 297-304.	1.9	124
44	The onset of non-Newtonian rheology of silicate melts. Physics and Chemistry of Minerals, 1990, 17, 125.	0.8	116
45	The influence of thermal-stressing (up to $1000 \hat{A}^{\circ}$ C) on the physical, mechanical, and chemical properties of siliceous-aggregate, high-strength concrete. Construction and Building Materials, 2013, 42, 248-265.	7.2	114
46	The viscous-brittle transition of crystal-bearing silicic melt: Direct observation of magma rupture and healing. Geology, 2012, 40, 611-614.	4.4	113
47	Volcanic ash melting under conditions relevant to ash turbine interactions. Nature Communications, 2016, 7, 10795.	12.8	113
48	Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis. Contributions To Mineralogy and Petrology, 2006, 152, 685-702.	3.1	109
49	Viscosities of melts in the Na2Oî—,FeOî—,Fe2O3î—,SiO2 system and factors controlling relative viscosities of fully polymerized silicate melts. Geochimica Et Cosmochimica Acta, 1988, 52, 395-403.	3.9	107
50	Reconstructing magma failure and the degassing network of dome-building eruptions. Geology, 2013, 41, 515-518.	4.4	106
51	Three fragmentation mechanisms for highly viscous magma under rapid decompression. Journal of Volcanology and Geothermal Research, 2000, 100, 413-421.	2.1	102
52	Fragmentation efficiency of explosive volcanic eruptions: A study of experimentally generated pyroclasts. Journal of Volcanology and Geothermal Research, 2006, 153, 125-135.	2.1	101
53	Rheological properties of dome lavas: Case study of Unzen volcano. Earth and Planetary Science Letters, 2009, 279, 263-272.	4.4	101
54	Mechanical behaviour and failure modes in the Whakaari (White Island volcano) hydrothermal system, New Zealand. Journal of Volcanology and Geothermal Research, 2015, 295, 26-42.	2.1	101

#	Article	IF	CITATIONS
55	Thermodynamic and rheological properties of rhyolite and andesite melts. Contributions To Mineralogy and Petrology, 1993, 113, 572-581.	3.1	98
56	The evolution of pore connectivity in volcanic rocks. Earth and Planetary Science Letters, 2017, 462, 99-109.	4.4	96
57	The equivalence of enthalpy and shear stress relaxation in rhyolitic obsidians and quantification of the liquid-glass transition in volcanic processes. Journal of Volcanology and Geothermal Research, 1995, 68, 297-306.	2.1	94
58	Heterogeneity: The key to failure forecasting. Scientific Reports, 2015, 5, 13259.	3.3	94
59	Melt densities for leucogranites and granitic pegmatites: Partial molar volumes for SiO2, Al2O3, Na2O, K2O, Li2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, B2O3, P2O5, F2Oâ°'1, TiO2, Nb2O5, Ta2O5, and WO3. Geochimica Et Cosmochimica Acta, 1995, 59, 4645-4652.	3.9	92
60	A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand). Journal of Volcanology and Geothermal Research, 2017, 332, 88-108.	2.1	92
61	Enhancement of magma mixing efficiency by chaotic dynamics: an experimental study. Contributions To Mineralogy and Petrology, 2011, 161, 863-881.	3.1	91
62	Volcanic sintering: Timescales of viscous densification and strength recovery. Geophysical Research Letters, 2013, 40, 5658-5664.	4.0	91
63	Chemical diffusivities of 18 trace elements in granitoid melts. Geochimica Et Cosmochimica Acta, 1999, 63, 2599-2610.	3.9	90
64	The effect of phosphorus on the iron redox ratio, viscosity, and density of an evolved ferro-basalt. Contributions To Mineralogy and Petrology, 1994, 117, 293-304.	3.1	88
65	Aggregation-dominated ash settling from the Eyjafjallajökull volcanic cloud illuminated by field and laboratory high-speed imaging. Geology, 2011, 39, 891-894.	4.4	88
66	The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for "metasomatism―by the host lava. Contributions To Mineralogy and Petrology, 2006, 151, 681-697.	3.1	87
67	Viscosity of peridotite liquid. Earth and Planetary Science Letters, 2004, 226, 127-138.	4.4	86
68	Magmatic architecture of dome-building eruptions at $Volc\tilde{A}_i$ n de Colima, Mexico. Bulletin of Volcanology, 2012, 74, 249-260.	3.0	85
69	The variable influence of P2O5 on the viscosity of melts of differing alkali/aluminium ratio: Implications for the structural role of phosphorus in silicate melts. Geochimica Et Cosmochimica Acta, 1996, 60, 4107-4121.	3.9	83
70	The viscosity of trachytes, and comparison with basalts, phonolites, and rhyolites. Chemical Geology, 2004, 213, 49-61.	3.3	83
71	Viscosity-temperature relationships in the system Na2Si2O5-Na4Al2O5. Geochimica Et Cosmochimica Acta, 1986, 50, 1261-1265.	3.9	82
72	The solubility of rhenium in silicate melts: Implications for the geochemical properties of rhenium at high temperatures. Geochimica Et Cosmochimica Acta, 2001, 65, 2161-2170.	3.9	82

#	Article	IF	CITATIONS
73	"Explosive energy―during volcanic eruptions from fractal analysis of pyroclasts. Earth and Planetary Science Letters, 2006, 248, 800-807.	4.4	82
74	Thermal weakening of the carbonate basement under Mt. Etna volcano (Italy): Implications for volcano instability. Journal of Volcanology and Geothermal Research, 2013, 250, 42-60.	2.1	81
75	The dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean Fields. Chemical Geology, 2003, 202, 23-38.	3.3	80
76	Lava flow rheology: A comparison of morphological and petrological methods. Earth and Planetary Science Letters, 2013, 384, 109-120.	4.4	79
77	Effects of structural relaxation on cationic tracer diffusion in silicate melts. Chemical Geology, 1990, 82, 209-216.	3.3	78
78	Experimental peridotite–melt reaction at one atmosphere: a textural and chemical study. Contributions To Mineralogy and Petrology, 2008, 155, 199-214.	3.1	78
79	Experimental generation of volcanic lightning. Geology, 2014, 42, 79-82.	4.4	78
80	Effects of water and fluorine on the viscosity of albite melt at high pressure: a preliminary investigation. Earth and Planetary Science Letters, 1985, 74, 266-274.	4.4	77
81	Nonlinear composition dependence of molar volume of melts in the CaOî—'Al2O33î—'SiO2 system. Geochimica Et Cosmochimica Acta, 1995, 59, 3685-3695.	3.9	77
82	The viscosities of dry and hydrous XAlSi3O8 (X=Li, Na, K, Ca0.5, Mg0.5) melts. Chemical Geology, 2001, 174, 115-132.	3.3	77
83	A compositional tipping point governing the mobilization and eruption style of rhyolitic magma. Nature, 2017, 552, 235-238.	27.8	77
84	Non-linear properties of supercooled liquids in the system Na2Oî—,SiO2. Chemical Geology, 1994, 116, 1-16.	3.3	76
85	Conduit implosion during Vulcanian eruptions. Geology, 2005, 33, 581.	4.4	76
86	Timescales of spherulite crystallization in obsidian inferred from water concentration profiles. American Mineralogist, 2008, 93, 1816-1822.	1.9	76
87	Evaluation of a relaxation geospeedometer for volcanic glasses. Chemical Geology, 1995, 125, 137-148.	3.3	75
88	Trace element mobility during magma mixing: Preliminary experimental results. Chemical Geology, 2008, 256, 146-157.	3.3	75
89	Densities of melts in the CaO-MgO-Al ₂ O ₃ -SiO ₂ system. American Mineralogist, 1999, 84, 465-476.	1.9	74
90	V oxidation state and coordination number in silicate glasses by XAS. American Mineralogist, 2004, 89, 1640-1646.	1.9	74

#	Article	IF	Citations
91	Tracking the permeable porous network during strain-dependent magmatic flow. Journal of Volcanology and Geothermal Research, 2013, 260, 117-126.	2.1	74
92	Volcanic drumbeat seismicity caused by stick-slip motion and magmatic frictional melting. Nature Geoscience, 2014, 7, 438-442.	12.9	74
93	Universal scaling of fluid permeability during volcanic welding and sediment diagenesis. Geology, 2016, 44, 219-222.	4.4	74
94	Thermophysical properties and cyclic lifetime of plasma sprayed SrAl ₁₂ O ₁₉ for thermal barrier coating applications. Journal of the American Ceramic Society, 2020, 103, 5599-5611.	3.8	74
95	Predicting shear viscosity during volcanic processes at the glass transition: a calorimetric calibration. Earth and Planetary Science Letters, 2002, 198, 417-427.	4.4	73
96	Transport Properties of Magmas: Diffusion and Rheology. Elements, 2006, 2, 281-286.	0.5	73
97	SO2 sequestration in large volcanic eruptions: High-temperature scavenging by tephra. Geochimica Et Cosmochimica Acta, 2013, 110, 58-69.	3.9	73
98	Nonisothermal viscous sintering of volcanic ash. Journal of Geophysical Research: Solid Earth, 2014, 119, 8792-8804.	3.4	71
99	Melt densities in the CaO-FeO-Fe2O3-SiO2 system and the compositional dependence of the partial molar volume of ferric iron in silicate melts. Geochimica Et Cosmochimica Acta, 1988, 52, 2815-2825.	3.9	69
100	Melt densities in the Na2O-FeO-Fe2O3-SiO2 system and the partial molar volume of tetrahedrally-coordinated ferric iron in silicate melts. Geochimica Et Cosmochimica Acta, 1988, 52, 2467-2475.	3.9	68
101	X-ray absorption study of Ti-bearing silicate glasses. Physics and Chemistry of Minerals, 1994, 21, 501.	0.8	68
102	Energy consumption by magmatic fragmentation and pyroclast ejection during Vulcanian eruptions. Earth and Planetary Science Letters, 2010, 291, 60-69.	4.4	68
103	Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules. Nature Chemistry, 2019, 11, 779-788.	13.6	66
104	Hydrothermal alteration of surficial rocks at Solfatara (Campi Flegrei): Petrophysical properties and implications for phreatic eruption processes. Journal of Volcanology and Geothermal Research, 2016, 320, 128-143.	2.1	65
105	Tube pumices as strain markers of the ductile–brittle transition during magma fragmentation. Nature, 1999, 402, 650-653.	27.8	64
106	The Solubility of H ₂ O in Melts in the System SiO ₂ -Al ₂ O ₃ -Na ₂ O-K ₂ O at 1 to 2 Kbars. Journal of Geology, 1984, 92, 387-395.	1.4	63
107	Surface tension driven processes densify and retain permeability in magma and lava. Earth and Planetary Science Letters, 2016, 433, 116-124.	4.4	63
108	Fragmentation of foamed silicic melts: an experimental study. Earth and Planetary Science Letters, 2000, 178, 47-58.	4.4	62

#	Article	IF	CITATIONS
109	Hyperquenched volcanic glass from Loihi Seamount, Hawaii. Earth and Planetary Science Letters, 2008, 270, 54-62.	4.4	62
110	Strength and permeability recovery of tuffisite-bearing andesite. Solid Earth, 2012, 3, 191-198.	2.8	62
111	Frequency dependent rheology of vesicular rhyolite. Journal of Geophysical Research, 1993, 98, 6477-6487.	3.3	61
112	Viscosity and glass transition temperature of hydrous melts in the system CaAl2Si2O8–CaMgSi2O6. Chemical Geology, 2008, 256, 203-215.	3.3	61
113	Viscosity measurements of crystallizing andesite from <scp>T</scp> ungurahua volcano () Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf 5
114	Temperature-dependent thermal expansivities of silicate melts: The system anorthite-diopside. Geochimica Et Cosmochimica Acta, 1992, 56, 689-699.	3.9	60
115	Parametrization of viscosity-temperature relations of aluminosilicate melts. Chemical Geology, 1996, 128, 155-163.	3.3	60
116	Temperature dependence of Pt and Rh solubilities in a haplobasaltic melt. Geochimica Et Cosmochimica Acta, 2003, 67, 123-131.	3.9	60
117	Cooling rate correction of paleointensity determination for volcanic glasses by relaxation geospeedometry. Earth and Planetary Science Letters, 2006, 243, 282-292.	4.4	59
118	Extreme frictional processes in the volcanic conduit of Mount St. Helens (USA) during the 2004–2008 eruption. Journal of Structural Geology, 2012, 38, 61-76.	2.3	59
119	The rheology of peralkaline rhyolites from Pantelleria Island. Journal of Volcanology and Geothermal Research, 2013, 249, 201-216.	2.1	59
120	Microlites and "nanolites" in rhyolitic glass: microstructural and chemical characterization. Bulletin of Volcanology, 1996, 57, 631-640.	3.0	58
121	An experimental facility for the investigation of magma fragmentation by rapid decompression. Bulletin of Volcanology, 1996, 58, 411-416.	3.0	58
122	Rheological and thermodynamic behaviors of different calcium aluminosilicate melts with the same non-bridging oxygen content. Journal of Non-Crystalline Solids, 2004, 336, 179-188.	3.1	58
123	How tough is tuff in the event of fire?. Geology, 2012, 40, 311-314.	4.4	58
124	Thermal properties of vesicular rhyolite. Journal of Volcanology and Geothermal Research, 1994, 60, 179-191.	2.1	57
125	Melt viscosities in the system Na-Fe-Si-O-F-Cl; contrasting effects of F and Cl in alkaline melts. American Mineralogist, 1998, 83, 1016-1021.	1.9	57
126	Heterogeneities in magma chambers: Insights from the behavior of major and minor elements during mixing experiments with natural alkaline melts. Chemical Geology, 2008, 256, 131-145.	3.3	57

#	Article	IF	CITATIONS
127	The porosity of pyroclasts as an indicator of volcanic explosivity. Journal of Volcanology and Geothermal Research, 2011, 203, 168-174.	2.1	57
128	Fusion characteristics of volcanic ash relevant to aviation hazards. Geophysical Research Letters, 2014, 41, 2326-2333.	4.0	57
129	The effect of oxygen fugacity on the rheological evolution of crystallizing basaltic melts. Earth and Planetary Science Letters, 2018, 487, 21-32.	4.4	57
130	Density of some titanium-bearing silicate liquids and the compositional dependence of the partial molar volume of TiO2. Geochimica Et Cosmochimica Acta, 1992, 56, 3403-3407.	3.9	56
131	Viscoelasticity of crystal- and bubble-bearing rhyolite melts. Physics of the Earth and Planetary Interiors, 1994, 83, 83-99.	1.9	56
132	Multicomponent diffusion in ternary silicate melts in the system K2O-Al2O3-SiO2: I. Experimental measurements. Geochimica Et Cosmochimica Acta, 1995, 59, 255-264.	3.9	56
133	Solubility of tungsten in a haplobasaltic melt as a function of temperature and oxygen fugacity. Geochimica Et Cosmochimica Acta, 1996, 60, 1171-1180.	3.9	56
134	Viscosity of a Teide phonolite in the welding interval. Journal of Volcanology and Geothermal Research, 2000, 103, 239-245.	2.1	56
135	Effect of aluminum on Ti-coordination in silicate glasses: A XANES study. American Mineralogist, 2000, 85, 108-117.	1.9	56
136	Magma fragmentation speed: an experimental determination. Journal of Volcanology and Geothermal Research, 2004, 129, 109-123.	2.1	56
137	XAS determination of the Fe local environment and oxidation state in phonolite glasses. American Mineralogist, 2011, 96, 631-636.	1.9	56
138	Novel thermal barrier coatings repel and resist molten silicate deposits. Scripta Materialia, 2019, 163, 71-76.	5.2	56
139	The effect of P2O5 on the viscosity of haplogranitic liquid. European Journal of Mineralogy, 1993, 5, 133-140.	1.3	56
140	The solubility of H ₂ O in peralkaline and peraluminous granitic melts. American Mineralogist, 1997, 82, 434-437.	1.9	55
141	The glass transition in hydrous granitic melts. Physics of the Earth and Planetary Interiors, 1998, 107, 1-8.	1.9	55
142	The thermal history of a spatter-fed lava flow: the 8-ka pantellerite flow of Mayor Island, New Zealand. Bulletin of Volcanology, 2002, 64, 410-422.	3.0	55
143	The thermal stability of Eyjafjallaj $\tilde{A}\P$ kull ash versus turbine ingestion test sands. Journal of Applied Volcanology, 2014, 3, .	2.0	55
144	Increase in radon emission due to rock failure: An experimental study. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	53

#	Article	IF	Citations
145	Approximate chemical analysis of volcanic glasses using Raman spectroscopy. Journal of Raman Spectroscopy, 2015, 46, 1235-1244.	2.5	53
146	The solubility and oxidation state of nickel in silicate melt at low oxygen fugacities: Results using a mechanically assisted equilibration technique. Geochimica Et Cosmochimica Acta, 1994, 58, 1967-1974.	3.9	52
147	Multicomponent diffusion in ternary silicate melts in the system K2O-A12O3-SiO2: II. Mechanisms, systematics, and geological applications. Geochimica Et Cosmochimica Acta, 1995, 59, 265-277.	3.9	52
148	Thermal vesiculation during volcanic eruptions. Nature, 2015, 528, 544-547.	27.8	52
149	Thermo-rheological magma control on the impact of highly fluid lava flows at Mt. Nyiragongo. Geophysical Research Letters, 2007, 34, .	4.0	51
150	Physical properties of CaAl2Si2O8–CaMgSi2O6–FeO–Fe2O3 melts: Analogues for extra-terrestrial basalt. Chemical Geology, 2013, 346, 93-105.	3.3	51
151	In situ thermal characterization of cooling/crystallizing lavas during rheology measurements and implications for lava flow emplacement. Geochimica Et Cosmochimica Acta, 2016, 195, 244-258.	3.9	51
152	Cooling dynamics of spatter-fed phonolite obsidian flows on Tenerife, Canary Islands. Journal of Volcanology and Geothermal Research, 2001, 105, 323-342.	2.1	50
153	Siderophile elements in silicate melts â€" A review of the mechanically assisted equilibration technique and the nanonugget issue. Chemical Geology, 2008, 248, 119-139.	3.3	50
154	Time-scales of recent Phlegrean Fields eruptions inferred from the application of a â€~diffusive fractionation' model of trace elements. Bulletin of Volcanology, 2010, 72, 431-447.	3.0	50
155	HCl uptake by volcanic ash in the high temperature eruption plume: Mechanistic insights. Geochimica Et Cosmochimica Acta, 2014, 144, 188-201.	3.9	50
156	Multiparametric observation of volcanic lightning: Sakurajima Volcano, Japan. Geophysical Research Letters, 2016, 43, 4221-4228.	4.0	50
157	Viscosity of microlite-bearing rhyolitic obsidians: an experimental study. Bulletin of Volcanology, 1996, 58, 298-309.	3.0	49
158	Field-based density measurements as tool to identify preeruption dome structure: set-up and first results from Unzen volcano, Japan. Journal of Volcanology and Geothermal Research, 2005, 141, 65-75.	2.1	49
159	Dynamics of explosive volcanism at Unzen volcano: an experimental contribution. Bulletin of Volcanology, 2006, 69, 175-187.	3.0	49
160	The Brittle-Ductile Transition in High-Level Granitic Magmas: Material Constraints. Journal of Petrology, 1997, 38, 1635-1644.	2.8	48
161	Influence of the fragmentation process on the dynamics of Vulcanian eruptions: An experimental approach. Earth and Planetary Science Letters, 2011, 302, 51-59.	4.4	48
162	Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts. Geochimica Et Cosmochimica Acta, 2014, 124, 348-365.	3.9	48

#	Article	IF	CITATIONS
163	Models for the estimation of Fe ³⁺ /Fe _{tot} ratio in terrestrial and extraterrestrial alkali- and iron-rich silicate glasses using Raman spectroscopyk. American Mineralogist, 2016, 101, 943-952.	1.9	48
164	The Density of Titanium(IV) Oxide Liquid. Journal of the American Ceramic Society, 1991, 74, 2718-2719.	3.8	47
165	Cooling rates of hyaloclastites: applications of relaxation geospeedometry to undersea volcanic deposits. Bulletin of Volcanology, 2000, 61, 527-536.	3.0	47
166	Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano). Journal of Volcanology and Geothermal Research, 2015, 302, 150-162.	2.1	47
167	Sintering of viscous droplets under surface tension. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20150780.	2.1	47
168	Rhyolite magma degassing: an experimental study of melt vesiculation. Bulletin of Volcanology, 1996, 57, 587-601.	3.0	46
169	The cooling of frontal flow ramps: a calorimetric study on the Rocche Rosse rhyolite flow, Lipari, Aeolian Islands, Italy. Terra Nova, 2001, 13, 157-164.	2.1	46
170	Viscous heating in rhyolite: An in situ experimental determination. Earth and Planetary Science Letters, 2008, 275, 121-126.	4.4	46
171	Experimental generation of volcanic pseudotachylytes: Constraining rheology. Journal of Structural Geology, 2012, 38, 222-233.	2.3	46
172	Permeability of compacting porous lavas. Journal of Geophysical Research: Solid Earth, 2015, 120, 1605-1622.	3.4	46
173	Viscosity data for hydrous peraluminous granitic melts; comparison with a metaluminous model. American Mineralogist, 1998, 83, 236-239.	1.9	45
174	Structure, structural relaxation and ion diffusion in sodium disilicate melts. Europhysics Letters, 2002, 59, 708-713.	2.0	45
175	The influence of H2O and CO2 on the glass transition temperature: insights into the effects of volatiles on magma viscosity. European Journal of Mineralogy, 2007, 19, 657-669.	1.3	45
176	Wetting and Spreading of Molten Volcanic Ash in Jet Engines. Journal of Physical Chemistry Letters, 2017, 8, 1878-1884.	4.6	45
177	The rheological evolution of the 2014/2015 eruption at Holuhraun, central Iceland. Bulletin of Volcanology, 2017, 79, 1.	3.0	45
178	Determination of silicate liquid thermal expansivity using dilatometry and calorimetry. European Journal of Mineralogy, 1992, 4, 95-104.	1,3	45
179	Multicomponent diffusion in the molten system K ₂ O-Na ₂ O-Al ₂ O-SiO ₃ -SiO ₂ -H ₂ O. American Mineralogist, 1998, 83, 685-699.	1.9	44
180	The rheological evolution of alkaline Vesuvius magmas and comparison with alkaline series from the Phlegrean Fields, Etna, Stromboli and Teide. Geochimica Et Cosmochimica Acta, 2009, 73, 6613-6630.	3.9	44

#	Article	IF	Citations
181	Interactions between rhyolitic and basaltic melts unraveled by chaotic mixing experiments. Chemical Geology, 2013, 346, 199-212.	3.3	44
182	Deformation of foamed rhyolites under internal and external stresses: an experimental investigation. Bulletin of Volcanology, 1993, 55, 147-154.	3.0	43
183	Volcanic edifice weakening via devolatilization reactions. Geophysical Journal International, 2011, 186, 1073-1077.	2.4	43
184	Can nanolites enhance eruption explosivity?. Geology, 2020, 48, 997-1001.	4.4	43
185	India-Asia collision as a driver of atmospheric CO2 in the Cenozoic. Nature Communications, 2021, 12, 3891.	12.8	43
186	The influence of trace amounts of water on the viscosity of rhyolites. Bulletin of Volcanology, 1998, 60, 89-97.	3.0	42
187	Effect of oxygen fugacity on the glass transition, viscosity and structure of silica- and iron-rich magmatic melts. Journal of Non-Crystalline Solids, 2017, 470, 78-85.	3.1	42
188	Chemical diffusivity of boron in melts of haplogranitic composition. Geochimica Et Cosmochimica Acta, 1993, 57, 1741-1751.	3.9	41
189	Granite and granitic pegmatite melts: volumes and viscosities. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1996, 87, 65-72.	0.3	41
190	Cooling rates of basaltic hyaloclastites and pillow lava glasses from the HSDP2 drill core. Geochimica Et Cosmochimica Acta, 2009, 73, 1052-1066.	3.9	41
191	Cooling rate variation in natural volcanic glasses from Tenerife, Canary Islands. Contributions To Mineralogy and Petrology, 1996, 125, 151-160.	3.1	40
192	Thermal history of Hawaiian pÄhoehoe lava crusts at the glass transition: implications for flow rheology and emplacement. Earth and Planetary Science Letters, 2004, 228, 343-353.	4.4	40
193	Experimental volcanology on eruptive products of Unzen volcano. Journal of Volcanology and Geothermal Research, 2008, 175, 110-119.	2.1	40
194	Determination of trace-element partitioning between fluid and melt using LA-ICP-MS analysis of synthetic fluid inclusions in glass. European Journal of Mineralogy, 1999, 11, 415-426.	1.3	40
195	The temperature dependence of the speciation of water in NaAlSi 3 O 8 -KAlSi 3 O 8 melts: an application of fictive temperatures derived from synthetic fluid-inclusions. Contributions To Mineralogy and Petrology, 1995, 122, 1-10.	3.1	39
196	Tensile strengths of hydrous vesicular glasses; an experimental study. American Mineralogist, 1996, 81, 1148-1154.	1.9	39
197	Abrasion in pyroclastic density currents: Insights from tumbling experiments. Physics and Chemistry of the Earth, 2012, 45-46, 33-39.	2.9	39
198	Time evolution of chemical exchanges during mixing of rhyolitic and basaltic melts. Contributions To Mineralogy and Petrology, 2013, 166, 615-638.	3.1	39

#	Article	IF	Citations
199	Concentration variance decay during magma mixing: a volcanic chronometer. Scientific Reports, 2015, 5, 14225.	3.3	39
200	Topological inversions in coalescing granular media control fluid-flow regimes. Physical Review E, 2017, 96, 033113.	2.1	39
201	Does an inter-flaw length control the accuracy of rupture forecasting in geological materials?. Earth and Planetary Science Letters, 2017, 475, 181-189.	4.4	39
202	Combined effusive-explosive silicic volcanism straddles the multiphase viscous-to-brittle transition. Nature Communications, 2018, 9, 4696.	12.8	39
203	Shear Rateâ€Dependent Disequilibrium Rheology and Dynamics of Basalt Solidification. Geophysical Research Letters, 2018, 45, 6466-6475.	4.0	39
204	Mineral chemistry of igneous melanite garnets from analcite-bearing volcanic rocks, Alberta, Canada. Contributions To Mineralogy and Petrology, 1985, 90, 29-35.	3.1	38
205	Multidisciplinary constraints of hydrothermal explosions based on the 2013 Gengissig lake events, Kverkfjöll volcano, Iceland. Earth and Planetary Science Letters, 2016, 434, 308-319.	4.4	38
206	Experimental investigations on the explosivity of steamâ€driven eruptions: A case study of Solfatara volcano (Campi Flegrei). Journal of Geophysical Research: Solid Earth, 2016, 121, 7996-8014.	3.4	38
207	Physical properties of volcanic lightning: Constraints from magnetotelluric and video observations at Sakurajima volcano, Japan. Earth and Planetary Science Letters, 2016, 444, 45-55.	4.4	38
208	Oxygen fugacity dependence of Os solubility in haplobasaltic melt. Geochimica Et Cosmochimica Acta, 2006, 70, 742-756.	3.9	37
209	The space and time complexity of chaotic mixing of silicate melts: Implications for igneous petrology. Lithos, 2012, 155, 326-340.	1.4	37
210	Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines. Acta Materialia, 2019, 171, 119-131.	7.9	37
211	Recent experimental progress in the physical description of silicic magma relevant to explosive volcanism. Geological Society Special Publication, 1998, 145, 9-26.	1.3	36
212	Experimental fragmentation of crystal- and vesicle-bearing silicic melts. Bulletin of Volcanology, 2001, 63, 398-405.	3.0	36
213	Grain-size characteristics of experimental pyroclasts of 1980 Mount St. Helens cryptodome dacite: effects of pressure drop and temperature. Bulletin of Volcanology, 2003, 65, 90-104.	3.0	36
214	Decoupled convection cells from mixing experiments with alkaline melts from Phlegrean Fields. Chemical Geology, 2004, 213, 227-251.	3.3	36
215	Spine growth and seismogenic faulting at Mt. Unzen, Japan. Journal of Geophysical Research: Solid Earth, 2015, 120, 4034-4054.	3.4	36
216	Effect of boron, phosphorus and fluorine on shear stress relaxation in haplogranite melts. European Journal of Mineralogy, 1993, 5, 409-426.	1.3	36

#	Article	IF	CITATIONS
217	Centrifuge-assisted falling-sphere viscometry. European Journal of Mineralogy, 1996, 8, 507-514.	1.3	36
218	Tektite cooling rates: Calorimetric relaxation geospeedometry applied to a natural glass. Geochimica Et Cosmochimica Acta, 1996, 60, 1099-1103.	3.9	35
219	The kinetic fragility of natural silicate melts. Journal of Physics Condensed Matter, 2003, 15, S945-S954.	1.8	35
220	Viscous heating in silicate melts: An experimental and numerical comparison. Journal of Geophysical Research, $2012,117,.$	3.3	35
221	Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico). Bulletin of Volcanology, 2012, 74, 2155-2169.	3.0	35
222	A Branched Magma Feeder System during the 1669 Eruption of Mt Etna: Evidence from a Time-integrated Study of Zoned Olivine Phenocryst Populations. Journal of Petrology, 2017, 58, 443-472.	2.8	35
223	Estimation of CMAS infiltration depth in EB-PVD TBCs: A new constraint model supported with experimental approach. Journal of the European Ceramic Society, 2019, 39, 2936-2945.	5.7	35
224	Pressure-induced coordination change of Ti in silicate glass: a XANES study. Physics and Chemistry of Minerals, 1994, 21, 510.	0.8	34
225	Physical properties of the 1980 Mount St. Helens cryptodome magma. Bulletin of Volcanology, 1997, 59, 103-111.	3.0	34
226	Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tongaâ€Hunga Ha'apai Volcano, Tonga. Journal of Geophysical Research: Solid Earth, 2018, 123, 3762-3779.	3.4	34
227	Non-linear temperature dependence of liquid volumes in the system albite-anorthite-diopside. Contributions To Mineralogy and Petrology, 1992, 111, 61-73.	3.1	33
228	A volume temperature relationship for liquid GeO2 and some geophysically relevant derived parameters for network liquids. Physics and Chemistry of Minerals, 1993, 19, 445.	0.8	33
229	Numerical modelling of stress generation and microfracturing of vesicle walls in glassy rocks. Journal of Volcanology and Geothermal Research, 1996, 73, 33-46.	2.1	33
230	Physical parameterization of Strombolian eruptions via experimentallyâ€validated modeling of highâ€speed observations. Geophysical Research Letters, 2012, 39, .	4.0	33
231	Saltation threshold for pyroclasts at various bedslopes: Wind tunnel measurements. Journal of Volcanology and Geothermal Research, 2014, 278-279, 14-24.	2.1	33
232	The influence of alkaline-earth oxides (BeO, MgO, CaO, SrO, BaO) on the viscosity of a haplogranitic melt: systematics of non-Arrhenian behaviour. European Journal of Mineralogy, 1996, 8, 371-382.	1.3	33
233	Trace Element Partitioning in Immiscible Silicate-Carbonate Liquid Systems: an Initial Experimental Study Using a Centrifuge Autoclave. Journal of Petrology, 1998, 39, 2095-2104.	2.8	32
234	Evidence for Al/Si tetrahedral network in aluminosilicate glasses from AlK-edge x-ray-absorption spectroscopy. Physical Review B, 1999, 60, 9216-9219.	3.2	31

#	Article	IF	CITATIONS
235	Heat capacities of haplogranitic glasses and liquids. Geochimica Et Cosmochimica Acta, 2001, 65, 1985-1994.	3.9	31
236	Viscosity of high-K basalt from the 5th April 2003 Stromboli paroxysmal explosion. Chemical Geology, 2009, 260, 278-285.	3.3	31
237	On the slow decompressive response of volatile- and crystal-bearing magmas: An analogue experimental investigation. Earth and Planetary Science Letters, 2016, 433, 44-53.	4.4	31
238	Chemical diffusion of fluorine in melts in the system Na2OAl2O3SiO2. Earth and Planetary Science Letters, 1985, 73, 377-384.	4.4	30
239	Temperature dependence of elastic P- and S-wave velocities in porous Mt. Unzen dacite. Journal of Volcanology and Geothermal Research, 2006, 153, 136-147.	2.1	30
240	Quantification of magma ascent rate through rockfall monitoring at the growing/collapsing lava dome of $Volc\tilde{A}_i$ n de Colima, Mexico. Solid Earth, 2013, 4, 201-213.	2.8	30
241	Viscosity and Anelasticity of Melts AGU Reference Shelf, 0, , 209-217.	0.6	30
242	The effect of the [Na/(Na+K)] ratio on Fe speciation in phonolitic glasses. American Mineralogist, 2015, 100, 1610-1619.	1.9	30
243	Size limits for rounding of volcanic ash particles heated by lightning. Journal of Geophysical Research: Solid Earth, 2017, 122, 1977-1989.	3.4	30
244	The dynamics of volcanic jets: Temporal evolution of particles exit velocity from shockâ€tube experiments. Journal of Geophysical Research: Solid Earth, 2017, 122, 6031-6045.	3.4	30
245	A general model for welding of ash particles in volcanic systems validated using in situ X-ray tomography. Earth and Planetary Science Letters, 2019, 525, 115726.	4.4	30
246	High-load, high-temperature deformation apparatus for synthetic and natural silicate melts. Review of Scientific Instruments, 2007, 78, 075102.	1.3	28
247	Stability of volcanic ash aggregates and break-up processes. Scientific Reports, 2017, 7, 7440.	3.3	28
248	Compressibility of titanosilicate melts. Contributions To Mineralogy and Petrology, 1994, 118, 157-168.	3.1	27
249	Experimental and analytical modeling of basaltic ash explosions at Mount Etna, Italy, 2001. Journal of Geophysical Research, 2004, 109, .	3.3	27
250	Shallow magmaâ€minglingâ€driven Strombolian eruptions at Mt. Yasur volcano, Vanuatu. Geophysical Research Letters, 2012, 39, .	4.0	27
251	Dune bedforms produced by dilute pyroclastic density currents from the August 2006 eruption of Tungurahua volcano, Ecuador. Bulletin of Volcanology, 2013, 75, 762.	3.0	27
252	Raman spectra of Martian glass analogues: A tool to approximate their chemical composition. Journal of Geophysical Research E: Planets, 2016, 121, 740-752.	3.6	27

#	Article	IF	CITATIONS
253	Plasma sprayed 18mol% YO1.5 stabilized hafnia as potential thermal barrier coating. Ceramics International, 2021, 47, 14515-14526.	4.8	27
254	Compositional dependence of H2O solubility along the joins NaAlSi3O8-KAlsi3O8, NaAlSi3O8-LiAlSi3O8, and KAlSi3O8-LiAlSi3O8. American Mineralogist, 1996, 81, 452-461.	1.9	26
255	Viscosity–temperature behaviour of dry melts in the Qz–Ab–Or system. Chemical Geology, 2001, 174, 133-142.	3.3	26
256	Modelling the non-Arrhenian rheology of silicate melts: Numerical considerations. European Journal of Mineralogy, 2002, 14, 417-428.	1.3	26
257	Europium oxidation state and local structure in silicate glasses. American Mineralogist, 2012, 97, 918-929.	1.9	26
258	Laboratory simulations of tensile fracture development in a volcanic conduit via cyclic magma pressurisation. Earth and Planetary Science Letters, 2012, 349-350, 231-239.	4.4	26
259	Relaxation of concentration variance: A new tool to measure chemical element mobility during mixing of magmas. Chemical Geology, 2013, 335, 8-23.	3.3	26
260	High and highly variable cooling rates during pyroclastic eruptions on Axial Seamount, Juan de Fuca Ridge. Journal of Volcanology and Geothermal Research, 2013, 253, 54-64.	2.1	26
261	The Grizzly Lake complex (Yellowstone Volcano, USA): Mixing between basalt and rhyolite unraveled by microanalysis and X-ray microtomography. Lithos, 2016, 260, 457-474.	1.4	26
262	Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding. Earth and Planetary Science Letters, 2016, 433, 232-240.	4.4	26
263	Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador. Bulletin of Volcanology, 2013, 75, 765.	3.0	25
264	Influence of cooling rate on thermoremanence of magnetite grains: Identifying the role of different magnetic domain states. Journal of Geophysical Research: Solid Earth, 2014, 119, 1599-1606.	3.4	25
265	A frictional law for volcanic ash gouge. Earth and Planetary Science Letters, 2014, 400, 177-183.	4.4	25
266	Fault rheology beyond frictional melting. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9276-9280.	7.1	25
267	Volcanic Ash Activates the NLRP3 Inflammasome in Murine and Human Macrophages. Frontiers in Immunology, 2017, 8, 2000.	4.8	25
268	Chemical diffusion of fluorine in jadeite melt at high pressure. Geochimica Et Cosmochimica Acta, 1984, 48, 2517-2525.	3.9	24
269	High-temperature densities of some mantle melts. Geochimica Et Cosmochimica Acta, 1997, 61, 3111-3119.	3.9	24
270	Liquid unmixing kinetics and the extent of immiscibility in the system K2O–CaO–FeO–Al2O3–SiO2. Chemical Geology, 2008, 256, 119-130.	3.3	24

#	Article	IF	CITATIONS
271	A cooling rate bias in paleointensity determination from volcanic glass: An experimental demonstration. Journal of Geophysical Research, 2010, 115, .	3.3	24
272	A general viscosity model of Campi Flegrei (Italy) melts. Chemical Geology, 2011, 290, 50-59.	3.3	24
273	Volcanic edifice weakening via decarbonation: A selfâ€limiting process?. Geophysical Research Letters, 2012, 39, .	4.0	24
274	Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves. Solid Earth, 2015, 6, 553-572.	2.8	24
275	Actinide diffusion in a haplogranitic melt: Effects of temperature, water content, and pressure. Geochimica Et Cosmochimica Acta, 1997, 61, 2237-2246.	3.9	23
276	Seismogenic frictional melting in the magmatic column. Solid Earth, 2014, 5, 199-208.	2.8	23
277	Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes. Scientific Reports, 2017, 7, 45762.	3.3	23
278	Dynamic spreading of re-melted volcanic ash bead on thermal barrier coatings. Corrosion Science, 2020, 170, 108659.	6.6	23
279	New insights on the origin of flow bands in obsidian. , 2005, , .		22
280	Rheological and thermodynamic behavior of calcium aluminosilicate melts within the anorthite–wollastonite–gehlenite compatibility triangle. Journal of Non-Crystalline Solids, 2005, 351, 499-507.	3.1	22
281	Eruptive shearing of tube pumice: pure and simple. Solid Earth, 2016, 7, 1383-1393.	2.8	22
282	Sintering of polydisperse viscous droplets. Physical Review E, 2017, 95, 033114.	2.1	22
283	Phreatic activity and hydrothermal alteration in the Valley of Desolation, Dominica, Lesser Antilles. Bulletin of Volcanology, 2017, 79, 1.	3.0	22
284	Thermal expansion of silicate liquids; direct determination using container-based dilatometry. American Mineralogist, 1999, 84, 1176-1180.	1.9	21
285	Matrix effect and partitioning of boron isotopes between immiscible Si-rich and B-rich liquids in the Si–Al–B–Ca–Na–O system: A SIMS study of glasses quenched from centrifuge experiments. Chemical Geology, 2005, 222, 268-280.	3.3	21
286	Water solubility and speciation in shoshonitic and latitic melt composition from Campi Flegrei Caldera (Italy). Chemical Geology, 2006, 229, 113-124.	3.3	21
287	Decarbonation and thermal microcracking under magmaticP-T-f CO2 conditions: the role of skarn substrata in promoting volcanic instability. Geophysical Journal International, 2013, 195, 369-380.	2.4	21
288	Crystal plasticity as an indicator of the viscous-brittle transition in magmas. Nature Communications, 2017, 8, 1926.	12.8	21

#	Article	IF	Citations
289	The importance of crystalline phases in ice nucleation by volcanic ash. Atmospheric Chemistry and Physics, 2019, 19, 5451-5465.	4.9	21
290	In situ observation of the percolation threshold in multiphase magma analogues. Bulletin of Volcanology, 2020, 82, 32.	3.0	21
291	Density of Ga2O3 Liquid. Journal of the American Ceramic Society, 1992, 75, 1656-1657.	3.8	20
292	Morphochemistry of patterns produced by mixing of rhyolitic and basaltic melts. Journal of Volcanology and Geothermal Research, 2013, 253, 87-96.	2.1	20
293	The effect of inflation on the morphology-derived rheological parameters of lava flows and its implications for interpreting remote sensing data - A case study on the 2014/2015 eruption at Holuhraun, Iceland. Journal of Volcanology and Geothermal Research, 2018, 357, 200-212.	2.1	20
294	Element partitioning between immiscible borosilicate liquids: A high-temperature centrifuge study. Geochimica Et Cosmochimica Acta, 2002, 66, 2603-2614.	3.9	19
295	Flow and fracturing of viscoelastic media under diffusion-driven bubble growth: An analogue experiment for eruptive volcanic conduits. Earth and Planetary Science Letters, 2006, 243, 771-785.	4.4	19
296	XAS investigation of rare earth elements in sodium disilicate glasses. Journal of Non-Crystalline Solids, 2013, 362, 162-168.	3.1	19
297	The effects of water vaporization on rock fragmentation during rapid decompression: Implications for the formation of fluidized ejecta on Mars. Earth and Planetary Science Letters, 2014, 385, 68-78.	4.4	19
298	Volcanic ash supports a diverse bacterial community in a marine mesocosm. Geobiology, 2017, 15, 453-463.	2.4	19
299	Cooling rates of lunar orange glass beads. Earth and Planetary Science Letters, 2018, 503, 88-94.	4.4	19
300	Chapter 2. RELAXATION IN SILICATE MELTS: SOME APPLICATIONS. , 1995, , 21-66.		18
301	Chapter 8. EXPERIMENTAL STUDIES OF BORON IN GRANITIC MELTS. , 1996, , 331-386.		18
302	Supercooled diopside melt: confirmation of temperature-dependent expansivity using container-based dilatometry. Contributions To Mineralogy and Petrology, 2000, 139, 127-135.	3.1	18
303	Measurement and implication of "effective" viscosity for rhyolite flow emplacement. Bulletin of Volcanology, 2001, 63, 227-237.	3.0	18
304	Liquid Immiscibility and Evolution of Basaltic Magma: Reply to S. A. Morse, A. R. McBirney and A. R. Philpotts. Journal of Petrology, 2008, 49, 2177-2186.	2.8	18
305	Europium structural environment in a sodium disilicate glass by XAS. Journal of Non-Crystalline Solids, 2010, 356, 1749-1753.	3.1	18
306	Outgassing: Influence on speed of magma fragmentation. Journal of Geophysical Research: Solid Earth, 2013, 118, 862-877.	3.4	18

#	Article	IF	Citations
307	Spherulites as in-situ recorders of thermal history in lava flows. Geology, 2015, 43, 647-650.	4.4	18
308	Conduit margin heating and deformation during the AD 1886 basaltic Plinian eruption at Tarawera volcano, New Zealand. Bulletin of Volcanology, 2016, 78, 12.	3.0	18
309	Disequilibrium Rheology and Crystallization Kinetics of Basalts and Implications for the Phlegrean Volcanic District. Frontiers in Earth Science, 2020, 8, .	1.8	18
310	A model for permeability evolution during volcanic welding. Journal of Volcanology and Geothermal Research, 2021, 409, 107118.	2.1	18
311	Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings. Rare Metals, 2022, 41, 469-481.	7.1	18
312	Magma / Suspension Rheology. Reviews in Mineralogy and Geochemistry, 2022, 87, 639-720.	4.8	18
313	Volcanic conduit failure as a trigger to magma fragmentation. Bulletin of Volcanology, 2012, 74, 11-13.	3.0	17
314	Magma mixing enhanced by bubble segregation. Solid Earth, 2015, 6, 1007-1023.	2.8	17
315	An advanced rotational rheometer system for extremely fluid liquids up to 1273 K and applications to alkali carbonate meltsk. American Mineralogist, 2016, 101, 953-959.	1.9	17
316	Experimental estimates of the energy budget of hydrothermal eruptions; application to 2012 Upper Te Maari eruption, New Zealand. Earth and Planetary Science Letters, 2016, 452, 281-294.	4.4	17
317	Magma Mixing: History and Dynamics of an Eruption Trigger. Advances in Volcanology, 2017, , 123-137.	1.1	17
318	A Raman spectroscopic tool to estimate chemical composition of natural volcanic glasses. Chemical Geology, 2020, 556, 119819.	3.3	17
319	Permeability of polydisperse magma foam. Geology, 2020, 48, 536-540.	4.4	17
320	Characterising vent and crater shape changes at Stromboli: implications for risk areas. Volcanica, 2021, 4, 87-105.	1.8	17
321	Modelling of melt segregation processes by high-temperature centrifuging of partially molten granites-I. Melt extraction by compaction and deformation. Geophysical Journal International, 1996, 127, 616-626.	2.4	16
322	Influence of decompression rate on fragmentation processes: An experimental study. Journal of Volcanology and Geothermal Research, 2010, 193, 182-188.	2.1	16
323	Interfacial tension between immiscible liquids in the system K2O-FeO-Fe2O3-Al2O3-SiO2 and implications for the kinetics of silicate melt unmixing. American Mineralogist, 2010, 95, 1679-1685.	1.9	16
324	Time-series analysis of fissure-fed multi-vent activity: a snapshot from the July 2014 eruption of Etna volcano (Italy). Bulletin of Volcanology, 2017, 79, 1.	3.0	16

#	Article	IF	Citations
325	The effect of diffusive re-equilibration time on trace element partitioning between alkali feldspar and trachytic melts. Chemical Geology, 2018, 495, 50-66.	3.3	16
326	Electrification of Experimental Volcanic Jets with Varying Water Content and Temperature. Geophysical Research Letters, 2019, 46, 11136-11145.	4.0	16
327	SO2 scrubbing during percolation through rhyolitic volcanic domes. Geochimica Et Cosmochimica Acta, 2019, 257, 150-162.	3.9	16
328	Pyroclastic dune bedforms: macroscale structures and lateral variations. Examples from the 2006 pyroclastic currents at Tungurahua (Ecuador). Sedimentology, 2019, 66, 1531-1559.	3.1	16
329	A calibrated database of Raman spectra for natural silicate glasses: implications for modelling melt physical properties. Journal of Raman Spectroscopy, 2020, 51, 1822-1838.	2.5	16
330	From melt to crystals: The effects of cooling on Fe Ti oxide nanolites crystallisation and melt polymerisation at oxidising conditions. Chemical Geology, 2021, 563, 120057.	3.3	16
331	Heat flows in rock cracks naturally optimize salt compositions for ribozymes. Nature Chemistry, 2021, 13, 1038-1045.	13.6	16
332	Degassing and gas percolation in basaltic magmas. Earth and Planetary Science Letters, 2021, 573, 117134.	4.4	16
333	Partial molar volumes of NiO and CoO liquids: implications for the pressure dependence of metal-silicate partitioning. Earth and Planetary Science Letters, 1999, 171, 171-183.	4.4	15
334	Experimental determination of partial molar volumes of Ga2O3 and GeO2 in silicate melts: implications for the pressure dependence of metal–silicate partition coefficients. Chemical Geology, 2001, 174, 33-49.	3.3	15
335	High-temperature density of lanthanide-bearing Na-silicate melts: Partial molar volumes for Ce2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, Dy2O3, Ho2O3, Er2O3, Tm2O3, and Yb2O3. American Mineralogist, 2005, 90, 1597-1605.	1.9	15
336	Magma mixing induced by particle settling. Contributions To Mineralogy and Petrology, 2016, 171, 96.	3.1	15
337	Earthquakes indicated magma viscosity during Kīlauea's 2018 eruption. Nature, 2021, 592, 237-241.	27.8	15
338	Experimental constraints on volcanic ash generation and clast morphometrics in pyroclastic density currents and granular flows. Volcanica, 2020, 3, 263-283.	1.8	15
339	Experimental strategies for the investigation of low temperature properties in granitic and pegmatitic melts. Chemical Geology, 1993, 108, 19-30.	3.3	14
340	Neutron diffraction study of feldspar glasses. Mixed alkali effect. Journal of Non-Crystalline Solids, 1995, 191, 124-131.	3.1	14
341	The propagation and seismicity of dyke injection, new experimental evidence. Geophysical Research Letters, 2016, 43, 1876-1883.	4.0	14
342	Volcanic ash ice-nucleating activity can be enhanced or depressed by ash-gas interaction in the eruption plume. Earth and Planetary Science Letters, 2020, 551, 116587.	4.4	14

#	Article	IF	CITATIONS
343	Hydrothermal eruption dynamics reflecting vertical variations in host rock geology and geothermal alteration, Champagne Pool, Wai-o-tapu, New Zealand. Bulletin of Volcanology, 2020, 82, 1.	3.0	14
344	Influence of molten volcanic ash infiltration on the friability of APS thermal barrier coatings. Ceramics International, 2020, 46, 11364-11371.	4.8	14
345	The influence of thermal barrier coating dissolution on CMAS melt viscosities. Journal of the European Ceramic Society, 2021, 41, 2746-2752.	5.7	14
346	Compositional dependence of the activity of nickel in silicate melts. Geochimica Et Cosmochimica Acta, 1997, 61, 4707-4721.	3.9	13
347	Viscosities of granitic (sensu lato) melts: Influence of the anorthite component. American Mineralogist, 2000, 85, 1342-1348.	1.9	13
348	Temperature independent thermal expansivities of calcium aluminosilicate melts between 1150 and 1973K in the system anorthite–wollastonite–gehlenite (An–Wo–Geh): A density model. Geochimica Et Cosmochimica Acta, 2006, 70, 3059-3074.	3.9	13
349	Paleointensities of phonolitic obsidian: Influence of emplacement rotations and devitrification. Journal of Geophysical Research, 2011, 116, .	3.3	13
350	Time scales of foam stability in shallow conduits: Insights from analogue experiments. Geochemistry, Geophysics, Geosystems, 2016, 17, 4179-4194.	2.5	13
351	Raman Spectroscopy from Laboratory and Proximal to Remote Sensing: A Tool for the Volcanological Sciences. Remote Sensing, 2020, 12, 805.	4.0	13
352	Permeability of packs of polydisperse hard spheres. Physical Review E, 2021, 103, 062613.	2.1	13
353	Granitic melt viscosities. Geological Society Special Publication, 1999, 168, 27-38.	1.3	12
354	Analysis of source characteristics of experimental gas burst and fragmentation explosions generated by rapid decompression of volcanic rocks. Journal of Geophysical Research: Solid Earth, 2015, 120, 5104-5116.	3.4	12
355	Assessment of the potential for in-plume sulphur dioxide gas-ash interactions to influence the respiratory toxicity of volcanic ash. Environmental Research, 2019, 179, 108798.	7.5	12
356	<i>In situ</i> granulation by thermal stress during subaqueous volcanic eruptions. Geology, 2019, 47, 179-182.	4.4	12
357	Mineralogical and thermal characterization of a volcanic ash: Implications for turbine interaction. Journal of Volcanology and Geothermal Research, 2019, 377, 43-52.	2.1	12
358	Determination of permeability using a classic Darcy water column. American Journal of Physics, 2020, 88, 20-24.	0.7	12
359	Novel thermal barrier coatings with hexagonal boron nitride additives resistant to molten volcanic ash wetting. Corrosion Science, 2020, 168, 108587.	6.6	12
360	Silicate ash-resistant novel thermal barrier coatings in gas turbines. Corrosion Science, 2022, 194, 109929.	6.6	12

#	Article	IF	CITATIONS
361	Sulfur as a binding agent of aggregates in explosive eruptions. Bulletin of Volcanology, 2014, 76, 871.	3.0	11
362	Variability in composition and physical properties of the sedimentary basement of Mt Etna, Italy. Journal of Volcanology and Geothermal Research, 2015, 302, 102-116.	2.1	11
363	Hydrothermal activity and subsoil complexity: implication for degassing processes at Solfatara crater, Campi Flegrei caldera. Bulletin of Volcanology, 2017, 79, 1.	3.0	11
364	Aggregation in particle rich environments: a textural study of examples from volcanic eruptions, meteorite impacts, and fluidized bed processing. Bulletin of Volcanology, 2018, 80, 32.	3.0	11
365	Frictional melt homogenisation during fault slip: Geochemical, textural and rheological fingerprints. Geochimica Et Cosmochimica Acta, 2019, 255, 265-288.	3.9	11
366	Quantifying Microstructural Evolution in Moving Magma. Frontiers in Earth Science, 2020, 8, .	1.8	11
367	Chapter 4. VISCOELASTICITY. , 1995, , 95-120.		10
368	Thermal expansivities of supercooled haplobasaltic liquids. Geochimica Et Cosmochimica Acta, 2002, 66, 2231-2238.	3.9	10
369	Temperature-dependent thermal expansivities of multicomponent natural melts between 993 and 1803 K. Chemical Geology, 2006, 229, 10-27.	3.3	10
370	Eruption and emplacement timescales of ignimbrite super-eruptions from thermo-kinetics of glass shards. Frontiers in Earth Science, 2015, 3, .	1.8	10
371	Flow and fragmentation patterns in the silicic feeder system and related deposits in the Paraná-Etendeka Magmatic Province, São Marcos, South Brazil. Journal of Volcanology and Geothermal Research, 2018, 358, 149-164.	2.1	10
372	Tailoring the initial characterization of fully stabilized HfO2 with Y2O3/Ta2O5. Journal of Alloys and Compounds, 2021, 867, 159113.	5.5	10
373	The Brittle-Ductile Transition in High-Level Granitic Magmas: Material Constraints. Journal of Petrology, 1997, 38, 1635-1644.	2.8	10
374	The roles of microlites and phenocrysts during degassing of silicic magma. Earth and Planetary Science Letters, 2022, 577, 117264.	4.4	10
375	Paleointensities on 8 ka obsidian from Mayor Island, New Zealand. Solid Earth, 2011, 2, 259-270.	2.8	9
376	Vesiculation in rhyolite at low <scp>H</scp> ₂ <scp>O</scp> contents: A thermodynamic model. Geochemistry, Geophysics, Geosystems, 2015, 16, 4292-4310.	2.5	9
377	Dynamic elastic moduli during isotropic densification of initially granular media. Geophysical Journal International, 2016, 204, 1721-1728.	2.4	9
378	Friendly fire: Engineering a fort wall in the Iron Age. Journal of Archaeological Science, 2016, 67, 7-13.	2.4	9

#	Article	IF	Citations
379	Diversity of soluble salt concentrations on volcanic ash aggregates from a variety of eruption types and deposits. Bulletin of Volcanology, 2019, 81, 1.	3.0	9
380	Microstructures and Properties of Sm2(Zr0.7Ce0.3)2O7/8YSZ Double-Ceramic-Layer Thermal Barrier Coatings Deposited by Atmospheric Plasma Spraying. Journal of Thermal Spray Technology, 2019, 28, 986-999.	3.1	9
381	A rotating autoclave for centrifuge studies: falling sphere viscometry. European Journal of Mineralogy, 1997, 9, 345-350.	1.3	9
382	Decrypting Magma Mixing in Igneous Systems. Reviews in Mineralogy and Geochemistry, 2022, 87, 607-638.	4.8	9
383	Dynamics of strong and fragile glass formers and a scaling procedure for the temperature dependence of the viscosity. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 1402-1407.	0.9	8
384	Seismological analysis of conduit dynamics in fragmentation experiments. Journal of Geophysical Research: Solid Earth, 2014, 119, 2215-2229.	3.4	8
385	Spatial analysis of Mount St. Helens tephra leachate compositions: implications for future sampling strategies. Bulletin of Volcanology, 2015, 77, 60.	3.0	8
386	Release characteristics of overpressurised gas from complex vents: implications for volcanic hazards. Bulletin of Volcanology, 2020, 82, 68.	3.0	8
387	Effects of the dissolution of thermal barrier coating materials on the viscosity of remelted volcanic ash. American Mineralogist, 2020, 105, 1104-1107.	1.9	8
388	Geochemistry and petrogenesis of the post-collisional high-K calc-alkaline magmatic rocks in Tengchong, SE Tibet. Journal of Asian Earth Sciences, 2020, 193, 104309.	2.3	8
389	Magma Fragmentation. Reviews in Mineralogy and Geochemistry, 2022, 87, 767-800.	4.8	8
390	Models for Viscosity of Geological Melts. Reviews in Mineralogy and Geochemistry, 2022, 87, 841-885.	4.8	8
391	A high-temperature Brillouin scattering study on four compositions of haplogranitic glasses and melts: High-frequency elastic behavior through the glass transition. American Mineralogist, 2013, 98, 367-375.	1.9	7
392	Local geology controlled the feasibility of vitrifying Iron Age buildings. Scientific Reports, 2017, 7, 40028.	3.3	7
393	Experimental study of monazite solubility in haplogranitic melts: a new model for peraluminous and peralkaline melts. European Journal of Mineralogy, 2019, 31, 49-59.	1.3	7
394	Fall-experiments on Merapi basaltic andesite and constraints on the generation of pyroclastic surges. EEarth, 2007, 2, 1-5.	0.8	7
395	Impact vesiculation – a new trigger for volcanic bubble growth and degassing. EEarth Discussions, 2007, 2, 151-167.	0.3	7
396	Development and Testing of a Glass Waste Form for the Immobilization of Plutonium. Materials Research Society Symposia Proceedings, 1996, 465, 1229.	0.1	6

#	Article	IF	Citations
397	Chapter 13. MELT VISCOSITY AND DIFFUSION UNDER ELEVATED PRESSURES., 1998, , 397-424.		6
398	A novel apparatus for the simulation of eruptive gas-rock interactions. Bulletin of Volcanology, 2015, 77, 1.	3.0	6
399	When Does Magma Break?. Advances in Volcanology, 2017, , 171-184.	1.1	6
400	Diffusion of F and Cl in dry rhyodacitic melt. American Mineralogist, 2019, 104, 1689-1699.	1.9	6
401	Volcanic ash generation: Effects of componentry, particle size and conduit geometry on size-reduction processes. Earth and Planetary Science Letters, 2019, 514, 13-27.	4.4	6
402	The Fragility of Volcán de Colima—A Material Constraint. Active Volcanoes of the World, 2019, , 241-266.	1.4	6
403	Rapid alteration of fractured volcanic conduits beneath Mt Unzen. Bulletin of Volcanology, 2021, 83, 1.	3.0	6
404	The force required to operate the plunger on a French press. American Journal of Physics, 2021, 89, 769-775.	0.7	6
405	The Influence of Chemical and Mineral Compositions on the Parameterization of Immersion Freezing by Volcanic Ash Particles. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033356.	3.3	6
406	Long-term observation of electrical discharges during persistent Vulcanian activity. Earth and Planetary Science Letters, 2021, 570, 117084.	4.4	6
407	Stratigraphic reconstruction of the VÃti breccia at Krafla volcano (Iceland): insights into pre-eruptive conditions priming explosive eruptions in geothermal areas. Bulletin of Volcanology, 2021, 83, 81.	3.0	6
408	Pre-Eruptive Conditions and Dynamics Recorded in Banded Pumices from the El Abrigo Caldera-Forming Eruption (Tenerife, Canary Islands). Journal of Petrology, 2022, 63, .	2.8	6
409	Interparticle and Brownian forces controlling particle aggregation and rheology of silicate melts containing platinum-group element particles. Scientific Reports, 2022, 12, .	3.3	6
410	Modelling of melt segregation processes by high-temperature centrifuging of partially molten granites-II. Rayleigh-Taylor instability and sedimentation. Geophysical Journal International, 1996, 127, 627-634.	2.4	5
411	Chaotic Mixing in the System Earth: Mixing Granitic and Basaltic Liquids. , 2010, , .		5
412	Intrinsic proton dynamics in hydrous silicate melts as seen by quasielastic neutron scattering at elevated temperature and pressure. Chemical Geology, 2017, 461, 152-159.	3.3	5
413	A feedback mechanism between crystals and bubbles in a RuO2-bearing melt. Journal of Non-Crystalline Solids, 2022, 582, 121456.	3.1	5
414	A partial molar volume for La2O3 in silicate melts. Journal of Non-Crystalline Solids, 2006, 352, 304-314.	3.1	4

#	Article	lF	Citations
415	A partial molar volume for ZnO in silicate melts. American Mineralogist, 2006, 91, 366-374.	1.9	4
416	Revisiting the lacquer peels method with pyroclastic deposits: sediment plates, a precise, fine scale imaging method and powerful outreach tool. Journal of Applied Volcanology, 2018, 7, .	2.0	4
417	Hydrothermal eruptions at unstable crater lakes: Insights from the Boiling Lake, Dominica, Lesser Antilles. Journal of Volcanology and Geothermal Research, 2019, 381, 101-118.	2.1	4
418	Determination of water speciation in hydrous haplogranitic glasses with partial Raman spectra. Chemical Geology, 2020, 553, 119793.	3. 3	4
419	Petrophysical characterisation of volcanic ejecta to constrain subsurface lithological heterogeneities: implications for edifice stability at basaltic volcanoes. Volcanica, 2021, 4, 41-66.	1.8	4
420	Linking gas and particle ejection dynamics to boundary conditions in scaled shock-tube experiments. Bulletin of Volcanology, 2021, 83, 53.	3.0	4
421	A model for the kinetics of high-temperature reactions between polydisperse volcanic ash and SO2 gas. American Mineralogist, 2021, 106, 1319-1332.	1.9	4
422	The effect of halogens (F, Cl) on the near-liquidus crystallinity of a hydrous trachyte melt. American Mineralogist, 2022, 107, 1007-1017.	1.9	4
423	A novel method for the quantitative morphometric characterization of soluble salts on volcanic ash. Bulletin of Volcanology, 2022, 84, 1.	3.0	4
424	Hot Sintering of Melts, Glasses and Magmas. Reviews in Mineralogy and Geochemistry, 2022, 87, 801-840.	4.8	4
425	Inflated pyroclasts in proximal fallout deposits reveal abrupt transitions in eruption behaviour. Nature Communications, 2022, 13 , .	12.8	4
426	Europium structural role in silicate glasses: Reduction kinetics at low oxygen fugacity. Journal of Physics: Conference Series, 2009, 190, 012179.	0.4	3
427	Interfacial tension between immiscible liquids in alkaline earth – boron oxide binary systems. Journal of Non-Crystalline Solids, 2010, 356, 1163-1167.	3.1	3
428	A viscousâ€toâ€brittle transition in eruptions through clay suspensions. Geophysical Research Letters, 2017, 44, 4806-4813.	4.0	3
429	Forecasting Multiphase Magma Failure at the Laboratory Scale Using Acoustic Emission Data. Frontiers in Earth Science, 2018, 6, .	1.8	3
430	Rheological change and degassing during a trachytic Vulcanian eruption at Kilian Volcano, Cha \tilde{A}^{\otimes} ne des Puys, France. Bulletin of Volcanology, 2020, 82, 1.	3.0	3
431	Host Rock Variability Powers the Diversity of Steamâ€Driven Eruptions. Geophysical Research Letters, 2021, 48, e2020GL089025.	4.0	3
432	Complex geometry of volcanic vents and asymmetric particle ejection: experimental insights. Bulletin of Volcanology, 2022, 84, .	3.0	3

#	Article	IF	Citations
433	Solubility of Water in Albite-Melt Determined by the Weight Loss Method: A Discussion. Journal of Geology, 1987, 95, 583-584.	1.4	2
434	Reply to: Comment on: Supercooled diopside melt: confirmation of temperature-dependent expansivity using container-based dilatometry by J. Gottsmann and D.B. Dingwell. Contributions To Mineralogy and Petrology, 2002, 142, 759-762.	3.1	2
435	The feasibility of vitrifying a sandstone enclosure in the British Iron Age. Journal of Archaeological Science: Reports, 2015, 4, 605-612.	0.5	2
436	Trashcano: Developing a quantitative teaching tool to understand ballistics accelerated by explosive volcanic eruptions. Volcanica, 2018, 1, 107-126.	1.8	2
437	Vesiculation of Rhyolitic Melts Under Oscillatory Pressure. Frontiers in Earth Science, 2022, 10, .	1.8	2
438	Universal scaling for the permeability of random packs of overlapping and nonoverlapping particles. Physical Review E, 2022, 105, L043301.	2.1	2
439	Introduction to C. M. Scarfe Memorial: Special Section on Silicate Melts and Mantle Petrogenesis. Journal of Geophysical Research, 1990, 95, 15663-15664.	3.3	1
440	Reply to the comment by E. F. Riebling on ?Glass-forming oxide melts of possible geological import revisited?. Geochimica Et Cosmochimica Acta, 1996, 60, 537.	3.9	1
441	Granite and granitic pegmatite melts: volumes and viscosities. , 1996, , .		1
442	Volcanic glass and its suitability to recover the ancient geomagnetic field strength. Geological Society Special Publication, 2015, 396, 265-276.	1.3	1
443	Novel Thermal Barrier Coatings Resistant to Molten Volcanic Ash Deposition. SSRN Electronic Journal, 0, , .	0.4	1
444	Fragmentation behavior of eruptive products of Popocat \tilde{A} ©petl volcano: an experimental contribution. Geofisica International, 2019, 58, 49-72.	0.2	1
445	Using obsidian in glass art practice. Volcanica, 2022, 5, 183-207.	1.8	1
446	Memorial to Christopher Martin Scarfe. Journal of Geophysical Research, 1990, 95, 15661-15662.	3.3	0
447	Measurement and implication of "effective" viscosity for rhyolite flow emplacement. Bulletin of Volcanology, 2001, 63, 362-362.	3.0	0
448	8th Silicate Melt Workshop. Chemical Geology, 2008, 256, 77-79.	3.3	0
449	The Peacock Medal For 2015 To Donald Bruce Dingwell. Canadian Mineralogist, 2016, 54, 781-783.	1.0	0
450	Fall-experiments on Merapi basaltic andesite and constraints on the generation of pyroclastic surges. EEarth Discussions, 2006, 1, 81-96.	0.3	0

#	Article	IF	CITATIONS
451	Dynamic melting behavior of volcanic ash subjected to thermal shock relevant to aviation hazards. Journal of Volcanology and Geothermal Research, 2022, 429, 107597.	2.1	O