Shiho Kawashima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3991274/publications.pdf Version: 2024-02-01

		393982	713013
21	2,759	19	21
papers	citations	h-index	g-index
21	21	21	1905
all docs	docs citations	times ranked	citing authors

SHIHO ΚΑΝΛΟΣΗΙΜΑ

#	Article	IF	CITATIONS
1	Modification of cement-based materials with nanoparticles. Cement and Concrete Composites, 2013, 36, 8-15.	4.6	425
2	Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry. Cement and Concrete Research, 2018, 112, 96-110.	4.6	332
3	Interfacial transition zones in recycled aggregate concrete with different mixing approaches. Construction and Building Materials, 2012, 35, 1045-1055.	3.2	279
4	Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar. Cement and Concrete Composites, 2013, 35, 12-22.	4.6	245
5	Effects of colloidal nanoSiO2 on fly ash hydration. Cement and Concrete Composites, 2012, 34, 1095-1103.	4.6	182
6	Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cement and Concrete Composites, 2018, 86, 288-296.	4.6	165
7	Experimental and modeling study on the non-linear structural build-up of fresh cement pastes incorporating viscosity modifying admixtures. Cement and Concrete Research, 2018, 108, 1-9.	4.6	136
8	Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes. Cement and Concrete Research, 2016, 90, 73-79.	4.6	112
9	Rate of thixotropic rebuilding of cement pastes modified with highly purified attapulgite clays. Cement and Concrete Research, 2013, 53, 112-118.	4.6	111
10	Early-age autogenous and drying shrinkage behavior of cellulose fiber-reinforced cementitious materials. Cement and Concrete Composites, 2011, 33, 201-208.	4.6	109
11	Recent advances on yield stress and elasticity of fresh cement-based materials. Cement and Concrete Research, 2019, 124, 105798.	4.6	109
12	Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash–cement systems. Materials and Structures/Materiaux Et Constructions, 2014, 47, 1011-1023.	1.3	108
13	Study of the mechanisms underlying the fresh-state response of cementitious materials modified with nanoclays. Construction and Building Materials, 2012, 36, 749-757.	3.2	103
14	Influence of Steel and Macro-Synthetic Fibers on Concrete Properties. Fibers, 2018, 6, 47.	1.8	83
15	Influence of purified attapulgite clays on the adhesive properties of cement pastes as measured by the tack test. Cement and Concrete Composites, 2014, 48, 35-41.	4.6	67
16	Influence of kaolinite clay on the chloride diffusion property of cement-based materials. Cement and Concrete Composites, 2014, 45, 117-124.	4.6	61
17	Rheology of cement paste under high pressure. Cement and Concrete Composites, 2017, 77, 60-67.	4.6	46
18	Flow onset of fresh mortars in rheometers: Contribution of paste deflocculation and sand particle migration. Cement and Concrete Research, 2016, 90, 97-103.	4.6	42

#	Article	IF	CITATIONS
19	Physicochemical effects of nanosilica on C ₃ A/C ₃ S hydration. Journal of the American Ceramic Society, 2020, 103, 6505-6518.	1.9	22
20	CO ₂ utilization in built environment <i>via</i> the <i>P</i> _{CO2} swing carbonation of alkaline solid wastes with different mineralogy. Faraday Discussions, 2021, 230, 187-212.	1.6	20
21	Evaluation of Mechanical Performance of Compacted Magnesium Hydroxide after Carbonation Curing. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	2