Geoffrey I Shapiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3990804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Results from Phase I Extension Study Assessing Pexidartinib Treatment in Six Cohorts with Solid Tumors including TGCT, and Abnormal CSF1 Transcripts in TGCT. Clinical Cancer Research, 2022, 28, 298-307.	7.0	12
2	Safety, pharmacokinetic, pharmacodynamic and clinical activity of molibresib for the treatment of nuclear protein of the testis carcinoma and other cancers: Results of a Phase <scp>I</scp> / <scp>II</scp> open″abel, dose escalation study. International Journal of Cancer, 2022, 150, 993-1006.	5.1	28
3	A phase 1b study evaluating the safety and preliminary efficacy of berzosertib in combination with gemcitabine in patients with advanced non-small cell lung cancer. Lung Cancer, 2022, 163, 19-26.	2.0	19
4	CSF1 receptor inhibition of tenosynovial giant cell tumor using novel disease-specific MRI measures of tumor burden. Future Oncology, 2022, , .	2.4	4
5	Phase Ib SEASTAR Study: Combining Rucaparib and Sacituzumab Govitecan in Patients With Cancer With or Without Mutations in Homologous Recombination Repair Genes. JCO Precision Oncology, 2022, 6, e2100456.	3.0	11
6	Phase 1b Clinical Trial with Alpelisib plus Olaparib for Patients with Advanced Triple-Negative Breast Cancer. Clinical Cancer Research, 2022, 28, 1493-1499.	7.0	22
7	A phase II trial of abemaciclib (abema) and atezolizumab (atezo) in unselected and <i>CDK12</i> loss metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2022, 40, TPS213-TPS213.	1.6	2
8	Updated biomarker results from a phase 1/2 study of olaparib and radium-223 in men with metastatic castration-resistant prostate cancer (mCRPC) with bone metastases (COMRADE) Journal of Clinical Oncology, 2022, 40, 119-119.	1.6	2
9	Abstract P2-07-13: High-dimensional, single-cell analysis and transcriptional profiling reveal novel correlatives of response to PARP inhibition plus PD-1 blockade in triple-negative breast cancer. Cancer Research, 2022, 82, P2-07-13-P2-07-13.	0.9	0
10	A phase Ia/Ib study of talazoparib in combination with tazemetostat in metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2022, 40, TPS195-TPS195.	1.6	1
11	Abstract OT2-01-02: First in human phase 1 dose escalation and expansion study of the safety and pharmacokinetics of the oral CDK7 inhibitor XL102 as a single-agent and in combination therapy in patients with inoperable locally advanced or metastatic solid tumors, including breast cancer. Cancer Research, 2022, 82, OT2-01-02-OT2-01-02.	0.9	0
12	A Phase I Study Investigating AZD8186, a Potent and Selective Inhibitor of PI3Kβ/δ, in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2022, 28, 2257-2269.	7.0	11
13	Phase 1b study of berzosertib and cisplatin in patients with advanced triple-negative breast cancer. Npj Breast Cancer, 2022, 8, 45.	5.2	16
14	Combined PARP and HSP90 inhibition: preclinical and Phase 1 evaluation in patients with advanced solid tumours. British Journal of Cancer, 2022, 126, 1027-1036.	6.4	18
15	Report of the First International Symposium on NUT Carcinoma. Clinical Cancer Research, 2022, 28, 2493-2505.	7.0	23
16	Antitumor Activity of Lurbinectedin, a Selective Inhibitor of Oncogene Transcription, in Patients with Relapsed Ewing Sarcoma: Results of a Basket Phase II Study. Clinical Cancer Research, 2022, 28, 2762-2770.	7.0	10
17	Targeting MUC1-C Suppresses Chronic Activation of Cytosolic Nucleotide Receptors and STING in Triple-Negative Breast Cancer. Cancers, 2022, 14, 2580.	3.7	14
18	A phase Ib open-label dose escalation study of the safety, pharmacokinetics, and pharmacodynamics of cobimetinib (GDC-0973) and ipatasertib (GDC-0068) in patients with locally advanced or metastatic solid tumors. Investigational New Drugs, 2021, 39, 163-174.	2.6	15

#	Article	IF	CITATIONS
19	Clinical Efficacy and Molecular Response Correlates of the WEE1 Inhibitor Adavosertib Combined with Cisplatin in Patients with Metastatic Triple-Negative Breast Cancer. Clinical Cancer Research, 2021, 27, 983-991.	7.0	29
20	A Phase 1 study of RO6870810, a novel bromodomain and extra-terminal protein inhibitor, in patients with NUT carcinoma, other solid tumours, or diffuse large B-cell lymphoma. British Journal of Cancer, 2021, 124, 744-753.	6.4	65
21	Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nature Cancer, 2021, 2, 66-82.	13.2	126
22	Pharmacokinetics and Safety of PTC596, a Novel Tubulinâ€Binding Agent, in Subjects With Advanced Solid Tumors. Clinical Pharmacology in Drug Development, 2021, 10, 940-949.	1.6	11
23	Clinical Efficacy of Olaparib in <i>IDH1/IDH2-</i> Mutant Mesenchymal Sarcomas. JCO Precision Oncology, 2021, 5, 466-472.	3.0	24
24	EZH2 inhibition activates a dsRNA–STING–interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nature Cancer, 2021, 2, 444-456.	13.2	118
25	Immune modulating activity of the CHK1 inhibitor prexasertib and anti-PD-L1 antibody LY3300054 in patients with high-grade serous ovarian cancer and other solid tumors. Cancer Immunology, Immunotherapy, 2021, 70, 2991-3000.	4.2	18
26	MMB-FOXM1-driven premature mitosis is required for CHK1 inhibitor sensitivity. Cell Reports, 2021, 34, 108808.	6.4	24
27	<i>FGFR2</i> Extracellular Domain In-Frame Deletions Are Therapeutically Targetable Genomic Alterations That Function as Oncogenic Drivers in Cholangiocarcinoma. Cancer Discovery, 2021, 11, 2488-2505.	9.4	46
28	Phase 1 study of the ATR inhibitor berzosertib (formerly M6620, VX-970) combined with gemcitabine ± cisplatin in patients with advanced solid tumours. British Journal of Cancer, 2021, 125, 510-519.	6.4	59
29	Phase 1 study of the ATR inhibitor berzosertib in combination with cisplatin in patients with advanced solid tumours. British Journal of Cancer, 2021, 125, 520-527.	6.4	37
30	Crizotinib in Patients With MET-Amplified NSCLC. Journal of Thoracic Oncology, 2021, 16, 1017-1029.	1.1	84
31	A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. Nature Cancer, 2021, 2, 598-610.	13.2	168
32	Phase 1 Combination Study of the CHK1 Inhibitor Prexasertib and the PARP Inhibitor Olaparib in High-grade Serous Ovarian Cancer and Other Solid Tumors. Clinical Cancer Research, 2021, 27, 4710-4716.	7.0	51
33	Opportunities for Utilization of DNA Repair Inhibitors in Homologous Recombination Repair-Deficient and Proficient Pancreatic Adenocarcinoma. Clinical Cancer Research, 2021, 27, 6622-6637.	7.0	7
34	Phase 1 dose escalation study of seribantumab (MM-121), an anti-HER3 monoclonal antibody, in patients with advanced solid tumors. Investigational New Drugs, 2021, 39, 1604-1612.	2.6	17
35	Phase 1 Trial of ALRN-6924, a Dual Inhibitor of MDMX and MDM2, in Patients with Solid Tumors and Lymphomas Bearing Wild-type <i>TP53</i> . Clinical Cancer Research, 2021, 27, 5236-5247.	7.0	74
36	Ceralasertib-Mediated ATR Inhibition Combined With Olaparib in Advanced Cancers Harboring DNA Damage Response and Repair Alterations (Olaparib Combinations). JCO Precision Oncology, 2021, 5, 1432-1442.	3.0	29

#	Article	IF	CITATIONS
37	A Replication stress biomarker is associated with response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in ovarian cancer. Nature Communications, 2021, 12, 5574.	12.8	32
38	The evolution of cyclin dependent kinase inhibitors in the treatment of cancer. Expert Review of Anticancer Therapy, 2021, 21, 1105-1124.	2.4	26
39	Characterization of patients with long-term responses to rucaparib treatment in recurrent ovarian cancer. Gynecologic Oncology, 2021, 163, 490-497.	1.4	20
40	Phase Ib Study of the Histone Deacetylase 6 Inhibitor Citarinostat in Combination With Paclitaxel in Patients With Advanced Solid Tumors. Frontiers in Oncology, 2021, 11, 786120.	2.8	5
41	Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell, 2021, 184, 6119-6137.e26.	28.9	201
42	Durable clinical benefit from PARP inhibition in a platinum-sensitive, BRCA2-mutated pancreatic cancer patient after earlier progression on placebo treatment on the POLO trial: a case report. Journal of Gastrointestinal Oncology, 2021, 12, 3133-3140.	1.4	2
43	Phase Ib study of the MEK inhibitor cobimetinib (GDC-0973) in combination with the PI3K inhibitor pictilisib (GDC-0941) in patients with advanced solid tumors. Investigational New Drugs, 2020, 38, 419-432.	2.6	55
44	Phase 1 Study of Molibresib (GSK525762), a Bromodomain and Extra-Terminal Domain Protein Inhibitor, in NUT Carcinoma and Other Solid Tumors. JNCI Cancer Spectrum, 2020, 4, pkz093.	2.9	126
45	A Phase I Study of DLYE5953A, an Anti-LY6E Antibody Covalently Linked to Monomethyl Auristatin E, in Patients with Refractory Solid Tumors. Clinical Cancer Research, 2020, 26, 5588-5597.	7.0	7
46	CHK1 Inhibitor Blocks Phosphorylation of FAM122A and Promotes Replication Stress. Molecular Cell, 2020, 80, 410-422.e6.	9.7	38
47	Impact of DNA Damage Response and Repair (DDR) Gene Mutations on Efficacy of PD-(L)1 Immune Checkpoint Inhibition in Non–Small Cell Lung Cancer. Clinical Cancer Research, 2020, 26, 4135-4142.	7.0	95
48	Selective CDK4/6 Inhibitors: Biologic Outcomes, Determinants of Sensitivity, Mechanisms of Resistance, Combinatorial Approaches, and Pharmacodynamic Biomarkers. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, 115-126.	3.8	16
49	Combined Targeting of the BRD4–NUT–p300 Axis in NUT Midline Carcinoma by Dual Selective Bromodomain Inhibitor, NEO2734. Molecular Cancer Therapeutics, 2020, 19, 1406-1414.	4.1	51
50	Biomarker-Guided Development of DNA Repair Inhibitors. Molecular Cell, 2020, 78, 1070-1085.	9.7	157
51	Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: a multicentre, open-label, randomised, phase 2 trial. Lancet Oncology, The, 2020, 21, 957-968.	10.7	140
52	First-in-human phase I study of immunomodulatory E7046, an antagonist of PGE ₂ -receptor E-type 4 (EP4), in patients with advanced cancers. , 2020, 8, e000222.		34
53	Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nature Communications, 2020, 11, 1459.	12.8	176
54	Dose-escalation trial of the ALK, MET & ROS1 inhibitor, crizotinib, in patients with advanced cancer. Future Oncology, 2020, 16, 4289-4301.	2.4	12

#	Article	lF	CITATIONS
55	An Anatomical Site and Genetic-Based Prognostic Model for Patients With Nuclear Protein in Testis (NUT) Midline Carcinoma: Analysis of 124 Patients. JNCI Cancer Spectrum, 2020, 4, pkz094.	2.9	114
56	The CHK1 Inhibitor Prexasertib Exhibits Monotherapy Activity in High-Grade Serous Ovarian Cancer Models and Sensitizes to PARP Inhibition. Clinical Cancer Research, 2019, 25, 6127-6140.	7.0	104
57	First-in-Class, First-in-Human Study Evaluating LV305, a Dendritic-Cell Tropic Lentiviral Vector, in Sarcoma and Other Solid Tumors Expressing NY-ESO-1. Clinical Cancer Research, 2019, 25, 5808-5817.	7.0	66
58	PARP Inhibitor Efficacy Depends on CD8+ T-cell Recruitment via Intratumoral STING Pathway Activation in BRCA-Deficient Models of Triple-Negative Breast Cancer. Cancer Discovery, 2019, 9, 722-737.	9.4	433
59	MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cell Reports, 2019, 26, 2667-2680.e7.	6.4	101
60	Olaparib and \hat{I}_{\pm} -specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: a dose-escalation and dose-expansion phase 1b trial. Lancet Oncology, The, 2019, 20, 570-580.	10.7	191
61	Functional profiling of nucleotide Excision repair in breast cancer. DNA Repair, 2019, 82, 102697.	2.8	10
62	Cabozantinib in Patients with Advanced Merkel Cell Carcinoma. Oncologist, 2018, 23, 814-821.	3.7	30
63	RAS–MAPK Reactivation Facilitates Acquired Resistance in <i>FGFR1</i> -Amplified Lung Cancer and Underlies a Rationale for Upfront FGFR–MEK Blockade. Molecular Cancer Therapeutics, 2018, 17, 1526-1539.	4.1	39
64	First-in-Class ERK1/2 Inhibitor Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors: Results of a Phase I Dose-Escalation and Expansion Study. Cancer Discovery, 2018, 8, 184-195.	9.4	283
65	Firstâ€inâ€human trial of the PI3Kβâ€selective inhibitor SAR260301 in patients with advanced solid tumors. Cancer, 2018, 124, 315-324.	4.1	29
66	CDK4/6 Inhibition Augments Antitumor Immunity by Enhancing T-cell Activation. Cancer Discovery, 2018, 8, 216-233.	9.4	503
67	Palbociclib resistance confers dependence on an FGFR-MAP kinase-mTOR-driven pathway in <i>KRAS</i> -mutant non-small cell lung cancer. Oncotarget, 2018, 9, 31572-31589.	1.8	42
68	Prediction of DNA Repair Inhibitor Response in Short-Term Patient-Derived Ovarian Cancer Organoids. Cancer Discovery, 2018, 8, 1404-1421.	9.4	311
69	Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine. Cancer Discovery, 2018, 8, 1096-1111.	9.4	256
70	A novel prognostic risk classification model for NUT midline carcinoma: a largest cohort analysis from the NMC registry Journal of Clinical Oncology, 2018, 36, 6085-6085.	1.6	11
71	Phase II randomised discontinuation trial of the MET/VEGF receptor inhibitor cabozantinib in metastatic melanoma. British Journal of Cancer, 2017, 116, 432-440.	6.4	59
72	Evaluation of BGJ398, a Fibroblast Growth Factor Receptor 1-3 Kinase Inhibitor, in Patients With Advanced Solid Tumors Harboring Genetic Alterations in Fibroblast Growth Factor Receptors: Results of a Global Phase I, Dose-Escalation and Dose-Expansion Study. Journal of Clinical Oncology, 2017, 35, 157-165.	1.6	345

#	Article	IF	CITATIONS
73	First-in-human trial of an anti-5T4 antibody-monomethylauristatin conjugate, PF-06263507, in patients with advanced solid tumors. Investigational New Drugs, 2017, 35, 315-323.	2.6	33
74	Immunotherapy with single agent nivolumab for advanced leiomyosarcoma of the uterus: Results of a phase 2 study. Cancer, 2017, 123, 3285-3290.	4.1	170
75	A Phase l–II Study of the Oral PARP Inhibitor Rucaparib in Patients with Germline <i>BRCA1/2</i> -Mutated Ovarian Carcinoma or Other Solid Tumors. Clinical Cancer Research, 2017, 23, 4095-4106.	7.0	213
76	Sensitizing HR-proficient cancers to PARP inhibitors. Molecular and Cellular Oncology, 2017, 4, e1299272.	0.7	4
77	Phase Ib Study of Safety and Pharmacokinetics of the PI3K Inhibitor SAR245408 with the HER3-Neutralizing Human Antibody SAR256212 in Patients with Solid Tumors. Clinical Cancer Research, 2017, 23, 3520-3528.	7.0	19
78	Phase II randomised discontinuation trial of cabozantinib in patients with advanced solid tumours. European Journal of Cancer, 2017, 86, 296-304.	2.8	64
79	Synergy of WEE1 and mTOR Inhibition in Mutant <i>KRAS</i> -Driven Lung Cancers. Clinical Cancer Research, 2017, 23, 6993-7005.	7.0	29
80	Phase 1 safety, pharmacokinetic and pharmacodynamic study of the cyclin-dependent kinase inhibitor dinaciclib administered every three weeks in patients with advanced malignancies. British Journal of Cancer, 2017, 117, 1258-1268.	6.4	42
81	Glesatinib Exhibits Antitumor Activity in Lung Cancer Models and Patients Harboring <i>MET</i> Exon 14 Mutations and Overcomes Mutation-mediated Resistance to Type I MET Inhibitors in Nonclinical Models. Clinical Cancer Research, 2017, 23, 6661-6672.	7.0	110
82	Genomic Biomarkers Predicting Response to Selective CDK4/6 Inhibition: Progress in an Elusive Search. Cancer Cell, 2017, 32, 721-723.	16.8	11
83	Tumor volume score (TVS), modified recist, and tissue damage score (TDS) as novel methods for assessing response in tenosynovial giant cell tumors (TGCT) treated with pexidartinib: Relationship with patient-reported outcomes (PROs) Journal of Clinical Oncology, 2017, 35, 11048-11048.	1.6	2
84	Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight, 2016, 1, e87062.	5.0	340
85	Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non–Small Cell Lung Cancer, and Other Solid Tumors. Cancer Discovery, 2016, 6, 740-753.	9.4	565
86	Phase I Study Evaluating WEE1 Inhibitor AZD1775 As Monotherapy and in Combination With Gemcitabine, Cisplatin, or Carboplatin in Patients With Advanced Solid Tumors. Journal of Clinical Oncology, 2016, 34, 4371-4380.	1.6	203
87	Cabozantinib for metastatic breast carcinoma: results of a phase II placebo-controlled randomized discontinuation study. Breast Cancer Research and Treatment, 2016, 160, 305-312.	2.5	37
88	Clinical Development of the CDK4/6 Inhibitors Ribociclib and Abemaciclib in Breast Cancer. Breast Care, 2016, 11, 167-173.	1.4	92
89	A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas. Clinical Cancer Research, 2016, 22, 5696-5705.	7.0	245
90	CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer. Cell Reports, 2016, 17, 2367-2381.	6.4	215

#	Article	IF	CITATIONS
91	ASP9853, an inhibitor of inducible nitric oxide synthase dimerization, in combination with docetaxel: preclinical investigation and a Phase I study in advanced solid tumors. Cancer Chemotherapy and Pharmacology, 2016, 77, 549-558.	2.3	15
92	Incorporation of Next-Generation Sequencing into Routine Clinical Care to Direct Treatment of Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2016, 22, 2939-2949.	7.0	51
93	Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discovery, 2016, 6, 353-367.	9.4	717
94	Phase I Safety, Pharmacokinetic, and Pharmacodynamic Study of the Poly(ADP-ribose) Polymerase (PARP) Inhibitor Veliparib (ABT-888) in Combination with Irinotecan in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2016, 22, 3227-3237.	7.0	85
95	Structure-Guided Blockade of CSF1R Kinase in Tenosynovial Giant-Cell Tumor. New England Journal of Medicine, 2015, 373, 428-437.	27.0	438
96	Disruption of DNA Repair by Cell Cycle and Transcriptional CDK Inhibition. Cancer Drug Discovery and Development, 2015, , 413-430.	0.4	0
97	DNA-PK—A Candidate Driver of Hepatocarcinogenesis and Tissue Biomarker That Predicts Response to Treatment and Survival. Clinical Cancer Research, 2015, 21, 925-933.	7.0	74
98	Phase II study of tivantinib (ARQ 197) in patients with metastatic triple-negative breast cancer. Investigational New Drugs, 2015, 33, 1108-1114.	2.6	44
99	Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discovery, 2015, 5, 1137-1154.	9.4	657
100	Intratumoral Heterogeneity in <i>EGFR</i> -Mutant NSCLC Results in Divergent Resistance Mechanisms in Response to EGFR Tyrosine Kinase Inhibition. Cancer Research, 2015, 75, 4372-4383.	0.9	108
101	First-in-Human Study of PF-05212384 (PKI-587), a Small-Molecule, Intravenous, Dual Inhibitor of PI3K and mTOR in Patients with Advanced Cancer. Clinical Cancer Research, 2015, 21, 1888-1895.	7.0	99
102	First-in-Human Phase I Dose Escalation Study of a Second-Generation Non-Ansamycin HSP90 Inhibitor, AT13387, in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2015, 21, 87-97.	7.0	78
103	Phase I Study of GC1008 (Fresolimumab): A Human Anti-Transforming Growth Factor-Beta (TGFβ) Monoclonal Antibody in Patients with Advanced Malignant Melanoma or Renal Cell Carcinoma. PLoS ONE, 2014, 9, e90353.	2.5	328
104	Phase I Safety, Pharmacokinetic, and Pharmacodynamic Study of SAR245408 (XL147), an Oral Pan-Class I PI3K Inhibitor, in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2014, 20, 233-245.	7.0	142
105	The Biology and Clinical Development of MEK Inhibitors for Cancer. Drugs, 2014, 74, 2111-2128.	10.9	35
106	Evaluation of Statistical Designs in Phase I Expansion Cohorts: The Dana-Farber/Harvard Cancer Center Experience. Journal of the National Cancer Institute, 2014, 106, .	6.3	45
107	Co-Clinical Trials Demonstrate Superiority of Crizotinib to Chemotherapy in <i>ALK</i> -Rearranged Non–Small Cell Lung Cancer and Predict Strategies to Overcome Resistance. Clinical Cancer Research, 2014, 20, 1204-1211.	7.0	57
108	A phase I clinical trial of navitoclax, a targeted high-affinity Bcl-2 family inhibitor, in combination with gemcitabine in patients with solid tumors. Investigational New Drugs, 2014, 32, 937-945.	2.6	57

#	Article	IF	CITATIONS
109	Aurora Kinase Inhibition As an Anticancer Strategy. Journal of Clinical Oncology, 2014, 32, 57-59.	1.6	50
110	Abstract CT328: Clinical results of a phase Ib dose-escalation study of the Mek inhibitor cobimetinib (GDC-0973) and the Akt inhibitor ipatasertib (GDC-0068) in patients (pts) with solid tumors. , 2014, , .		5
111	Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proceedings of the United States of America, 2013, 110, 17041-17046.	7.1	225
112	Phase I study of barasertib (AZD1152), a selective inhibitor of Aurora B kinase, in patients with advanced solid tumors. Investigational New Drugs, 2013, 31, 370-380.	2.6	59
113	Combination of a MEK inhibitor, pimasertib (MSC1936369B), and a PI3K/mTOR inhibitor, SAR245409, in patients with advanced solid tumors: Results of a phase lb dose-escalation trial Journal of Clinical Oncology, 2013, 31, 2530-2530.	1.6	19
114	Ganetespib (STA-9090), a Nongeldanamycin HSP90 Inhibitor, Has Potent Antitumor Activity in <i>In Vitro</i> and <i>In Vivo</i> Models of Non–Small Cell Lung Cancer. Clinical Cancer Research, 2012, 18, 4973-4985.	7.0	141
115	Chemotherapy-induced p53-dependent and -independent DNA damage responses are enhanced by poly(ADP-ribose) polymerase (PARP) inhibition in BRCA-proficient cancer cells. Cell Cycle, 2012, 11, 432-432.	2.6	0
116	Cyclin-dependent kinase 4/6 inhibition in cancer therapy. Cell Cycle, 2012, 11, 3913-3913.	2.6	19
117	Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood, 2012, 119, 4597-4607.	1.4	278
118	Effect of aprepitant on the pharmacokinetics of the cyclin-dependent kinase inhibitor dinaciclib in patients with advanced malignancies. Cancer Chemotherapy and Pharmacology, 2012, 70, 891-898.	2.3	22
119	Phase II Study of Single-Agent Navitoclax (ABT-263) and Biomarker Correlates in Patients with Relapsed Small Cell Lung Cancer. Clinical Cancer Research, 2012, 18, 3163-3169.	7.0	470
120	The effect of food on the bioavailability of panobinostat, an orally active pan-histone deacetylase inhibitor, in patients with advanced cancer. Cancer Chemotherapy and Pharmacology, 2012, 69, 555-562.	2.3	31
121	Phase I Study of Navitoclax (ABT-263), a Novel Bcl-2 Family Inhibitor, in Patients With Small-Cell Lung Cancer and Other Solid Tumors. Journal of Clinical Oncology, 2011, 29, 909-916.	1.6	498
122	Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nature Medicine, 2011, 17, 875-882.	30.7	238
123	Phase I Studies of CBP501, a G2 Checkpoint Abrogator, as Monotherapy and in Combination with Cisplatin in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2011, 17, 3431-3442.	7.0	29
124	Phase I Safety, Pharmacokinetic, and Pharmacodynamic Study of ENMD-2076, a Novel Angiogenic and Aurora Kinase Inhibitor,in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2011, 17, 849-860.	7.0	58
125	Development of Phosphoinositide-3 Kinase Pathway Inhibitors for Advanced Cancer. Current Oncology Reports, 2010, 12, 87-94.	4.0	54
126	Cyclin-dependent kinases (cdks) and the DNA damage response: rationale for cdk inhibitor–chemotherapy combinations as an anticancer strategy for solid tumors. Expert Opinion on Therapeutic Targets, 2010, 14, 1199-1212.	3.4	90

#	Article	IF	CITATIONS
127	Targeting Cyclin-Dependent Kinases for Cancer Therapy. , 2010, , 167-185.		0
128	Heat Shock Protein 90 Inhibition in Lung Cancer. Journal of Thoracic Oncology, 2008, 3, S152-S159.	1.1	70
129	Cyclin-Dependent Kinase Pathways As Targets for Cancer Treatment. Journal of Clinical Oncology, 2006, 24, 1770-1783.	1.6	927
130	Transcriptional Profiling Identifies Cyclin D1 as a Critical Downstream Effector of Mutant Epidermal Growth Factor Receptor Signaling. Cancer Research, 2006, 66, 11389-11398.	0.9	112
131	AZ703, an Imidazo[1,2- <i>a</i>]Pyridine Inhibitor of Cyclin-Dependent Kinases 1 and 2, Induces E2F-1-Dependent Apoptosis Enhanced by Depletion of Cyclin-Dependent Kinase 9. Cancer Research, 2006, 66, 435-444.	0.9	74
132	Combined Depletion of Cell Cycle and Transcriptional Cyclin-Dependent Kinase Activities Induces Apoptosis in Cancer Cells. Cancer Research, 2006, 66, 9270-9280.	0.9	143
133	Flavopiridol reduces malignant transformation of the esophageal mucosa in p27 knockout mice. Oncogene, 2005, 24, 1683-1688.	5.9	24
134	A Phase II Clinical and Pharmacodynamic Study of E7070 in Patients with Metastatic, Recurrent, or Refractory Squamous Cell Carcinoma of the Head and Neck. Clinical Cancer Research, 2004, 10, 4680-4687.	7.0	65
135	Bioluminescent imaging of Cdk2 inhibition in vivo. Nature Medicine, 2004, 10, 643-648.	30.7	91
136	Preclinical and Clinical Development of the Cyclin-Dependent Kinase Inhibitor Flavopiridol. Clinical Cancer Research, 2004, 10, 4270s-4275s.	7.0	175
137	The Physiology of p16 ^{INK4A} -Mediated G1 Proliferative Arrest. Cell Biochemistry and Biophysics, 2000, 33, 189-197.	1.8	51
138	Anticancer drug targets: cell cycle and checkpoint control. Journal of Clinical Investigation, 1999, 104, 1645-1653.	8.2	367
139	Mutation Analysis of Glial Cell Line-Derived Neurotrophic Factor, a Ligand for an RET/Coreceptor Complex, in Multiple Endocrine Neoplasia Type 2 and Sporadic Neuroendocrine Tumors. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3025-3028.	3.6	26
140	Mutation Analysis of Glial Cell Line-Derived Neurotrophic Factor, a Ligand for an RET/Coreceptor Complex, in Multiple Endocrine Neoplasia Type 2 and Sporadic Neuroendocrine Tumors. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3025-3028.	3.6	10