Mary F Paine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3990686/publications.pdf

Version: 2024-02-01

101 papers 6,106 citations

94415 37 h-index 74160 75 g-index

105 all docs 105 docs citations

105 times ranked 4763 citing authors

#	Article	IF	CITATIONS
1	Adapting regulatory drugâ€drug interaction guidance to design clinical pharmacokinetic natural productâ€drug interaction studies: A NaPDI Center recommended approach. Clinical and Translational Science, 2022, 15, 322-329.	3.1	3
2	Sex-specific pharmacological differences. , 2022, , 405-424.		1
3	Cannabis for Medical Use: Clinical Pharmacology Perspectives on Scientific and Regulatory Challenges. Clinical Pharmacology and Therapeutics, 2022, 111, 732-735.	4.7	O
4	Comprehensive Predictions of Cytochrome P450 (P450)-Mediated In Vivo Cannabinoid-Drug Interactions Based on Reversible and Time-Dependent P450 Inhibition in Human Liver Microsomes. Drug Metabolism and Disposition, 2022, 50, 351-360.	3.3	25
5	Clinical Pharmacokinetic Assessment of Kratom (Mitragyna speciosa), a Botanical Product with Opioid-like Effects, in Healthy Adult Participants. Pharmaceutics, 2022, 14, 620.	4.5	23
6	Clinical Relevance of Hepatic and Renal Pâ€gp/ <scp>BCRP</scp> Inhibition of Drugs: An International Transporter Consortium Perspective. Clinical Pharmacology and Therapeutics, 2022, 112, 573-592.	4.7	15
7	Intestinal Pâ€gp and Putative Hepatic OATP1B Induction: International Transporter Consortium Perspective on Drug Development Implications. Clinical Pharmacology and Therapeutics, 2021, 109, 55-64.	4.7	38
8	Assessing Transporterâ€Mediated Natural Productâ€Drug Interactions Via <i>In vitro</i> â€∢i>In VivoExtrapolation: Clinical Evaluation With a Probe Cocktail. Clinical Pharmacology and Therapeutics, 2021, 109, 1342-1352.	4.7	21
9	Refined Prediction of Pharmacokinetic Kratom-Drug Interactions: Time-Dependent Inhibition Considerations. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 64-73.	2.5	22
10	Hepatic organic anion transporting polypeptides mediate disposition of milk thistle flavonolignans and pharmacokinetic silymarinâ€drug interactions. Phytotherapy Research, 2021, 35, 3286-3297.	5.8	4
11	Modeling Pharmacokinetic Natural Product–Drug Interactions for Decision-Making: A NaPDI Center Recommended Approach. Pharmacological Reviews, 2021, 73, 847-859.	16.0	8
12	Inhibition of Arenaviruses by Combinations of Orally Available Approved Drugs. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	27
13	Can Cannabinoids Precipitate UGTâ€mediated Drug Interactions?. FASEB Journal, 2021, 35, .	0.5	2
14	Predicting the Potential of Major Cannabinoids and Their Metabolites to Precipitate Cytochrome P450â€mediated Drug Interactions. FASEB Journal, 2021, 35, .	0.5	0
15	Natural Products: Experimental Approaches to Elucidate Disposition Mechanisms and Predict Pharmacokinetic Drug Interactions. Drug Metabolism and Disposition, 2020, 48, 956-962.	3.3	8
16	"Natural―is not synonymous with "Safe― Toxicity of natural products alone and in combination with pharmaceutical agents. Regulatory Toxicology and Pharmacology, 2020, 113, 104642.	2.7	37
17	Modulation of Major Human Liver Microsomal Cytochromes P450 by Component Alkaloids of Goldenseal: Time-Dependent Inhibition and Allosteric Effects. Drug Metabolism and Disposition, 2020, 48, 1018-1027.	3.3	10
18	A New Data Repository for Pharmacokinetic Natural Product-Drug Interactions: From Chemical Characterization to Clinical Studies. Drug Metabolism and Disposition, 2020, 48, 1104-1112.	3.3	11

#	Article	IF	Citations
19	Predicting the Potential for Cannabinoids to Precipitate Pharmacokinetic Drug Interactions via Reversible Inhibition or Inactivation of Major Cytochromes P450. Drug Metabolism and Disposition, 2020, 48, 1008-1017.	3.3	50
20	United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicology Reports, 2020, 7, 386-402.	3.3	108
21	The Age of Omicsâ€Driven Precision Medicine. Clinical Pharmacology and Therapeutics, 2019, 106, 477-481.	4.7	7
22	A Pharmacokinetic Natural Product-Disease-Drug Interaction: A Double Hit of Silymarin and Nonalcoholic Steatohepatitis on Hepatic Transporters in a Rat Model. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 385-393.	2.5	8
23	Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach. Natural Product Reports, 2019, 36, 1196-1221.	10.3	72
24	A marijuana-drug interaction primer: Precipitants, pharmacology, and pharmacokinetics. , 2019, 201, 25-38.		65
25	Indinavir Increases Midazolam <i>N</i> -Glucuronidation in Humans: Identification of an Alternate CYP3A Inhibitor Using an In Vitro to In Vivo Approach. Drug Metabolism and Disposition, 2019, 47, 724-731.	3.3	7
26	Nonalcoholic fatty liver disease alters microcystin-LR toxicokinetics and acute toxicity. Toxicon, 2019, 162, 1-8.	1.6	13
27	Effects of Common <i><scp>CYP</scp>1A2</i> Genotypes and Other Key Factors on Intraindividual Variation in the Caffeine Metabolic Ratio: An Exploratory Analysis. Clinical and Translational Science, 2019, 12, 39-46.	3.1	32
28	Heterotropic Cooperativity for CYP3A4â€Mediated 1′â€Hydroxylation of Midazolam by Berberine: An In Silico Modeling and Simulation Study. FASEB Journal, 2019, 33, 508.5.	0.5	0
29	Identification of Intestinal UDP-Glucuronosyltransferase Inhibitors in Green Tea (<i>Camellia) Tj ETQq1 1 0.7843. In Vivo Extrapolation. Drug Metabolism and Disposition, 2018, 46, 552-560.</i>	14 rgBT /C 3.3	verlock 10 T 22
30	Follow that botanical: Challenges and recommendations for assessing absorption, distribution, metabolism and excretion of botanical dietary supplements. Food and Chemical Toxicology, 2018, 121, 194-202.	3.6	14
31	"Green Medicine― The Past, Present, and Future of Botanicals. Clinical Pharmacology and Therapeutics, 2018, 104, 410-415.	4.7	9
32	ITC Commentary on Metformin Clinical Drug–Drug Interaction Study Design That Enables an Efficacy― and Safetyâ€Based Dose Adjustment Decision. Clinical Pharmacology and Therapeutics, 2018, 104, 781-784.	4.7	28
33	Recommended Approaches for Pharmacokinetic Natural Product-Drug Interaction Research: a NaPDI Center Commentary. Drug Metabolism and Disposition, 2018, 46, 1041-1045.	3.3	20
34	Selection of Priority Natural Products for Evaluation as Potential Precipitants of Natural Product–Drug Interactions: A NaPDI Center Recommended Approach. Drug Metabolism and Disposition, 2018, 46, 1046-1052.	3.3	19
35	Comparison of Metabolomics Approaches for Evaluating the Variability of Complex Botanical Preparations: Green Tea (<i>Camellia sinensis</i>) as a Case Study. Journal of Natural Products, 2017, 80, 1457-1466.	3.0	53
36	Therapeutic disasters that hastened safety testing of new drugs. Clinical Pharmacology and Therapeutics, 2017, 101, 430-434.	4.7	17

#	Article	IF	CITATIONS
37	Prioritizing pharmacokinetic drug interaction precipitants in natural products: application to OATP inhibitors in grapefruit juice. Biopharmaceutics and Drug Disposition, 2017, 38, 251-259.	1.9	20
38	Quantitative prediction and clinical evaluation of an unexplored herb–drug interaction mechanism in healthy volunteers. CPT: Pharmacometrics and Systems Pharmacology, 2015, 4, 701-710.	2.5	22
39	Movember Is Mustache Month. Clinical Pharmacology and Therapeutics, 2015, 98, 562-564.	4.7	1
40	Chemoenzymatic Synthesis, Characterization, and Scale-Up of Milk Thistle Flavonolignan Glucuronides. Drug Metabolism and Disposition, 2015, 43, 1734-1743.	3.3	7
41	Breast Cancer Resistance Protein (ABCG2) in Clinical Pharmacokinetics and Drug Interactions: Practical Recommendations for Clinical Victim and Perpetrator Drug-Drug Interaction Study Design. Drug Metabolism and Disposition, 2015, 43, 490-509.	3.3	116
42	Milk Thistle Constituents Inhibit Raloxifene Intestinal Glucuronidation: A Potential Clinically Relevant Natural Product–Drug Interaction. Drug Metabolism and Disposition, 2015, 43, 1353-1359.	3.3	22
43	Chemotherapy of Second Stage Human African Trypanosomiasis: Comparison between the Parenteral Diamidine DB829 and Its Oral Prodrug DB868 in Vervet Monkeys. PLoS Neglected Tropical Diseases, 2015, 9, e0003409.	3.0	17
44	Mechanistic Basis of Altered Morphine Disposition in Nonalcoholic Steatohepatitis. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 462-470.	2.5	43
45	Inhibition of Human Aldehyde Oxidase Activity by Diet-Derived Constituents: Structural Influence, Enzyme-Ligand Interactions, and Clinical Relevance. Drug Metabolism and Disposition, 2015, 43, 34-41.	3.3	22
46	Identification of Diet-Derived Constituents as Potent Inhibitors of Intestinal Glucuronidation. Drug Metabolism and Disposition, 2014, 42, 1675-1683.	3. 3	44
47	Assessment of a Candidate Marker Constituent Predictive of a Dietary Substance–Drug Interaction: Case Study with Grapefruit Juice and CYP3A4 Drug Substrates. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 576-584.	2.5	12
48	Understanding the Transport Properties of Metabolites: Case Studies and Considerations for Drug Development. Drug Metabolism and Disposition, 2014, 42, 650-664.	3.3	53
49	Herb–Drug Interactions: Challenges and Opportunities for Improved Predictions. Drug Metabolism and Disposition, 2014, 42, 301-317.	3 . 3	148
50	Labeled content of two furanocoumarins in dietary supplements correlates with neither actual content nor CYP3A inhibitory activity. Journal of Pharmaceutical and Biomedical Analysis, 2014, 98, 260-265.	2.8	9
51	Characterizing the abuse potential of loperamide via physiologicallyâ€based pharmacokinetic/pharmacodynamic modeling and simulation (1053.6). FASEB Journal, 2014, 28, 1053.6.	0.5	1
52	Enhanced bioactivity of silybin B methylation products. Bioorganic and Medicinal Chemistry, 2013, 21, 742-747.	3.0	27
53	A Systematic Approach to Evaluate Herb-Drug Interaction Mechanisms: Investigation of Milk Thistle Extracts and Eight Isolated Constituents as CYP3A Inhibitors. Drug Metabolism and Disposition, 2013, 41, 1662-1670.	3 . 3	38
54	Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-O-methylated analogues of flavonolignans from milk thistle. Bioorganic and Medicinal Chemistry, 2013, 21, 3919-3926.	3.0	20

#	Article	IF	CITATIONS
55	Safety, Pharmacokinetic, and Efficacy Studies of Oral DB868 in a First Stage Vervet Monkey Model of Human African Trypanosomiasis. PLoS Neglected Tropical Diseases, 2013, 7, e2230.	3.0	16
56	Rapid Quantitation of Furanocoumarins and Flavonoids in Grapefruit Juice using Ultraâ€Performance Liquid Chromatography. Phytochemical Analysis, 2013, 24, 654-660.	2.4	21
57	A Modified Grapefruit Juice Eliminates Two Compound Classes as Major Mediators of the Grapefruit Juice–Fexofenadine Interaction: An In Vitro–In Vivo "Connectâ€, Journal of Clinical Pharmacology, 2013, 53, 982-990.	2.0	11
58	Compartmental and Enzyme Kinetic Modeling To Elucidate the Biotransformation Pathway of a Centrally Acting Antitrypanosomal Prodrug. Drug Metabolism and Disposition, 2013, 41, 518-528.	3.3	6
59	Assessing drug interaction risk of the grapefruit juice component and dietary supplement 6′,7′â€dihydroxybergamottin via physiologicallyâ€based pharmacokinetic modeling and simulation. FASEB Journal, 2013, 27, 1103.4.	0.5	o
60	Pharmacology of DB844, an Orally Active aza Analogue of Pafuramidine, in a Monkey Model of Second Stage Human African Trypanosomiasis. PLoS Neglected Tropical Diseases, 2012, 6, e1734.	3.0	34
61	A Mouse Diversity Panel Approach Reveals the Potential for Clinical Kidney Injury Due to DB289 Not Predicted by Classical Rodent Models. Toxicological Sciences, 2012, 130, 416-426.	3.1	50
62	A Semiphysiologically Based Pharmacokinetic Modeling Approach to Predict the Dose-Exposure Relationship of an Antiparasitic Prodrug/Active Metabolite Pair. Drug Metabolism and Disposition, 2012, 40, 6-17.	3.3	21
63	Impact of Organic Solvents on Cytochrome P450 Probe Reactions: Filling the Gap with $(\langle i\rangle S\langle i\rangle)$ -Warfarin and Midazolam Hydroxylation. Drug Metabolism and Disposition, 2012, 40, 2136-2142.	3.3	21
64	Mechanisms underlying food–drug interactions: Inhibition of intestinal metabolism and transport. , 2012, 136, 186-201.		105
65	Isolation and Identification of Intestinal CYP3A Inhibitors from Cranberry (<i>Vaccinium) Tj ETQq1 1 0.784314 rg</i>	BT/Overlo	ck 10 Tf 50
66	Mechanisms Underlying Differences in Systemic Exposure of Structurally Similar Active Metabolites: Comparison of Two Preclinical Hepatic Models. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 503-512.	2.5	22
67	Influence of Dietary Substances on Intestinal Drug Metabolism and Transport. Current Drug Metabolism, 2010, 11, 778-792.	1.2	33
68	Sulindac and Its Metabolites Inhibit Multiple Transport Proteins in Rat and Human Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 410-418.	2.5	26
69	Two Flavonolignans from Milk Thistle (<i>Silybum marianum</i>) Inhibit CYP2C9-Mediated Warfarin Metabolism at Clinically Achievable Concentrations. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 1081-1087.	2.5	7 5
70	Diamidines for human African trypanosomiasis. Current Opinion in Investigational Drugs, 2010, 11, 876-83.	2.3	61
71	Identification of a Cranberry Juice Product that Inhibits Enteric CYP3A-Mediated First-Pass Metabolism in Humans. Drug Metabolism and Disposition, 2009, 37, 514-522.	3.3	42
72	A gelâ€free MSâ€based quantitative proteomic approach accurately measures cytochrome P450 protein concentrations in human liver microsomes. Proteomics, 2008, 8, 4186-4196.	2.2	43

#	Article	IF	CITATIONS
73	The Influence of CYP3A5 Expression on the Extent of Hepatic CYP3A Inhibition Is Substrate-Dependent: An in Vitro-in Vivo Evaluation. Drug Metabolism and Disposition, 2008, 36, 146-154.	3.3	45
74	The Influence of CYP3A5 Genotype on Dexamethasone Induction of CYP3A Activity in African Americans. Drug Metabolism and Disposition, 2008, 36, 1465-1469.	3.3	29
7 5	Further characterization of a furanocoumarin-free grapefruit juice on drug disposition: studies with cyclosporine. American Journal of Clinical Nutrition, 2008, 87, 863-871.	4.7	49
76	Human Enteric Microsomal CYP4F Enzymes <i>O</i> Pafuramidine. Drug Metabolism and Disposition, 2007, 35, 2067-2075.	3.3	54
77	Clinical relevance of the small intestine as an organ of drug elimination: drug–fruit juice interactions. Expert Opinion on Drug Metabolism and Toxicology, 2007, 3, 67-80.	3.3	55
78	THE HUMAN INTESTINAL CYTOCHROME P450 "PIE― Drug Metabolism and Disposition, 2006, 34, 880-886.	3.3	764
79	A furanocoumarin-free grapefruit juice establishes furanocoumarins as the mediators of the grapefruit juice–felodipine interaction. American Journal of Clinical Nutrition, 2006, 83, 1097-1105.	4.7	147
80	CYP4F Enzymes Are the Major Enzymes in Human Liver Microsomes That Catalyze the O-Demethylation of the Antiparasitic Prodrug DB289 [2,5-Bis(4-amidinophenyl)furan-bis-O-methylamidoxime]. Drug Metabolism and Disposition, 2006, 34, 1985-1994.	3.3	79
81	Variation in oral clearance of saquinavir is predicted by CYP3A5*1 genotype but not by enterocyte content of cytochrome P450 3A5. Clinical Pharmacology and Therapeutics, 2005, 78, 605-618.	4.7	88
82	A Higher Dose Requirement of Tacrolimus in Active Crohn's Disease May Be Related to a High Intestinal P-Glycoprotein Content. Digestive Diseases and Sciences, 2005, 50, 2312-2315.	2.3	26
83	DO MEN AND WOMEN DIFFER IN PROXIMAL SMALL INTESTINAL CYP3A OR P-GLYCOPROTEIN EXPRESSION?. Drug Metabolism and Disposition, 2005, 33, 426-433.	3.3	102
84	Two Major Grapefruit Juice Components Differ in Time to Onset of Intestinal CYP3A4 Inhibition. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 1151-1160.	2.5	83
85	TWO MAJOR GRAPEFRUIT JUICE COMPONENTS DIFFER IN INTESTINAL CYP3A4 INHIBITION KINETIC AND BINDING PROPERTIES. Drug Metabolism and Disposition, 2004, 32, 1146-1153.	3.3	95
86	6\$prime;7\$prime;-dihydroxybergamottin contributes to the grapefruit juice effect*1. Clinical Pharmacology and Therapeutics, 2004, 75, 569-579.	4.7	69
87	Contributions of CYP3A4, P-glycoprotein, and Serum Protein Binding to the Intestinal First-Pass Extraction of Saquinavir. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 941-948.	2.5	55
88	New Insights into Drug Absorption. Therapeutic Drug Monitoring, 2004, 26, 463-467.	2.0	27
89	P-glycoprotein increases from proximal to distal regions of human small intestine. Pharmaceutical Research, 2003, 20, 1595-1599.	3.5	254
90	Identification of a Novel Route of Extraction of Sirolimus in Human Small Intestine: Roles of Metabolism and Secretion. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 174-186.	2.5	50

#	Article	IF	CITATIONS
91	Is quinine a suitable probe to assess the hepatic drug-metabolizing enzyme CYP3A4?. British Journal of Clinical Pharmacology, 2002, 54, 643-651.	2.4	15
92	Cytochrome P450 3A4 and P-glycoprotein mediate the interaction between an oral erythromycin breath test and rifampin. Clinical Pharmacology and Therapeutics, 2002, 72, 524-535.	4.7	47
93	The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism*â€. Drug Metabolism Reviews, 2001, 33, 273-297.	3.6	341
94	Seville orange juice-felodipine interaction: Comparison with dilute grapefruit juice and involvement of furocoumarins. Clinical Pharmacology and Therapeutics, 2001, 69, 14-23.	4.7	171
95	Effect of grapefruit juice on the disposition of omeprazole. British Journal of Clinical Pharmacology, 2001, 52, 213-217.	2.4	5
96	Can oral midazolam predict oral cyclosporine disposition?. European Journal of Pharmaceutical Sciences, 2000, 12, 51-62.	4.0	15
97	Immunochemical Identification of UGT Isoforms in Human Small Bowel and in Caco-2 Cell Monolayers. Biochemical and Biophysical Research Communications, 2000, 273, 1053-1057.	2.1	33
98	Comparison of CYP2D6 content and metoprolol oxidation between microsomes isolated from human livers and small intestines. Pharmaceutical Research, 1999, 16, 1199-1205.	3.5	73
99	Expression of Enzymatically Active CYP3A4 by Caco-2 Cells Grown on Extracellular Matrix-Coated Permeable Supports in the Presence of $1\hat{l}\pm,25$ -Dihydroxyvitamin D ₃ . Molecular Pharmacology, 1997, 51, 741-754.	2.3	304
100	First-pass metabolism of midazolam by the human intestine*. Clinical Pharmacology and Therapeutics, 1996, 60, 14-24.	4.7	409
101	Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism*. Clinical Pharmacology and Therapeutics, 1996, 59, 491-502.	4.7	547