
Tristram C Hales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3990274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring the grainâ€size distributions of mass movement deposits. Earth Surface Processes and Landforms, 2022, 47, 1599-1614.	1.2	10
2	The Fate of Sediment After a Large Earthquake. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	14
3	Ecosystem carbon stock loss after a mega earthquake. Catena, 2022, 216, 106393.	2.2	4
4	Vegetation-induced soil stabilization in coastal area: An example from a natural mangrove forest. Catena, 2022, 216, 106410.	2.2	26
5	Coseismic landslides induced by the 2018 Mw 6.6 Iburi, Japan, Earthquake: spatial distribution, key factors weight, and susceptibility regionalization. Landslides, 2021, 18, 755-772.	2.7	25
6	Topographic and Groundâ€lce Controls on Shallow Landsliding in Thawing Arctic Permafrost. Geophysical Research Letters, 2021, 48, e2020GL092264.	1.5	10
7	Shallow landslides and vegetation at the catchment scale: A perspective. Ecological Engineering, 2021, 173, 106436.	1.6	27
8	The application of frameworks for measuring social vulnerability and resilience to geophysical hazards within developing countries: A systematic review and narrative synthesis. Science of the Total Environment, 2020, 711, 134486.	3.9	49
9	Modelling soil erosion responses to climate change in three catchments of Great Britain. Science of the Total Environment, 2020, 749, 141657.	3.9	28
10	A hybrid machine-learning model to estimate potential debris-flow volumes. Geomorphology, 2020, 367, 107333.	1.1	13
11	The impact of earthquakes on orogen-scale exhumation. Earth Surface Dynamics, 2020, 8, 579-593.	1.0	7
12	Supervised classification of landforms in Arctic mountains. Permafrost and Periglacial Processes, 2019, 30, 131-145.	1.5	7
13	Earthquakeâ€Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 2019, 57, 421-503.	9.0	505
14	Identifying post-earthquake debris flow hazard using Massflow. Engineering Geology, 2019, 258, 105134.	2.9	31
15	Modelling the role of material depletion, grain coarsening and revegetation in debris flow occurrences after the 2008 Wenchuan earthquake. Engineering Geology, 2019, 250, 34-44.	2.9	81
16	Modelling biomeâ€scale root reinforcement and slope stability. Earth Surface Processes and Landforms, 2018, 43, 2157-2166.	1.2	18
17	Controls on Zeroâ€Order Basin Morphology. Journal of Geophysical Research F: Earth Surface, 2018, 123, 3269.	1.0	10
18	Spatio-temporal evolution of mass wasting after the 2008 Mw 7.9 Wenchuan earthquake revealed by a detailed multi-temporal inventory. Landslides, 2018, 15, 2325-2341.	2.7	102

TRISTRAM C HALES

#	Article	IF	CITATIONS
19	Can Riparian Forest Buffers Increase Yields From Oil Palm Plantations?. Earth's Future, 2018, 6, 1082-1096.	2.4	3
20	Modification of river meandering by tropical deforestation. Geology, 2017, 45, 511-514.	2.0	66
21	Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability. Earth Surface Processes and Landforms, 2017, 42, 803-813.	1.2	56
22	Multi-objective consideration of earthquake resilience in the built environment: The case of Wenchuan earthquake. , 2017, , .		2
23	Colluvium supply in humid regions limits the frequency of storm-triggered landslides. Scientific Reports, 2016, 6, 34438.	1.6	46
24	Frequency and Magnitude of Selected Historical Landslide Events in the Southern Appalachian Highlands of North Carolina and Virginia: Relationships to Rainfall, Geological and Ecohydrological Controls, and Effects. Managing Forest Ecosystems, 2016, , 203-262.	0.4	9
25	Frost for the trees: Did climate increase erosion in unglaciated landscapes during the late Pleistocene?. Science Advances, 2015, 1, e1500715.	4.7	70
26	Simulating vegetation controls on hurricaneâ€induced shallow landslides with a distributed ecohydrological model. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 361-378.	1.3	36
27	Assessing the accuracy of simple field based root strength measurements. Plant and Soil, 2013, 372, 553-565.	1.8	37
28	Ecosystem processes at the watershed scale: Extending optimality theory from plot to catchment. Water Resources Research, 2009, 45, .	1.7	78
29	Topographic and ecologic controls on root reinforcement. Journal of Geophysical Research, 2009, 114, .	3.3	145
30	Using soil residence time to delineate spatial and temporal patterns of transient landscape response. Journal of Geophysical Research, 2007, 112, .	3.3	43
31	Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. Journal of Geophysical Research, 2007, 112, .	3.3	193
32	A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon. Nature, 2005, 438, 842-845.	13.7	127