Qi Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/399009/publications.pdf

Version: 2024-02-01

218592 214721 2,291 47 26 47 citations h-index g-index papers 47 47 47 2761 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Control of chloride ion corrosion by MgAlOx/MgAlFeOx in the process of chloride deicing. Environmental Science and Pollution Research, 2022, 29, 9269-9281.	2.7	1
2	MOF-derived N-doped ZnO carbon skeleton@hierarchical Bi2MoO6 S-scheme heterojunction for photodegradation of SMX: Mechanism, pathways and DFT calculation. Journal of Hazardous Materials, 2022, 426, 128106.	6.5	98
3	Adsorption of nitrate from water by core-shell chitosan wrinkled microspheres @LDH composite: Electrostatic interaction, hydrogen bonding and surface complexation. Applied Clay Science, 2022, 225, 106550.	2.6	30
4	Adsorption of nitrate from water by quaternized chitosan wrinkled microspheres@MgFe-LDH core–shell composite. New Journal of Chemistry, 2022, 46, 14353-14362.	1.4	1
5	Ultrathin mesoporous g-C3N4/NH2-MIL-101(Fe) octahedron heterojunctions as efficient photo-Fenton-like system for enhanced photo-thermal effect and promoted visible-light-driven photocatalytic performance. Applied Surface Science, 2021, 537, 147890.	3.1	84
6	Oxygen vacancy-mediated sandwich-structural TiO2â^'x /ultrathin g-C3N4/TiO2â^'x direct Z-scheme heterojunction visible-light-driven photocatalyst for efficient removal of high toxic tetracycline antibiotics. Journal of Hazardous Materials, 2021, 408, 124432.	6. 5	103
7	Preparation of a recyclable demulsifier for the treatment of emulsified oil wastewater by chitosan modification and sodium oleate grafting Fe3O4. Journal of Environmental Chemical Engineering, 2021, 9, 105663.	3.3	24
8	Ti3+ self-doped rutile/anatase/TiO2(B) mixed-crystal tri-phase heterojunctions as effective visible-light-driven photocatalysts. Arabian Journal of Chemistry, 2020, 13, 2568-2578.	2.3	28
9	A new type of $SnO2@\hat{l}^2$ -Fe(Zr)OOH hollow nanosphere as a bifunctional adsorbent for removing nitrate from water: kinetics, isotherm, and thermodynamic studies. Journal of Materials Science, 2020, 55, 15797-15812.	1.7	8
10	Composite of chitosan and bentonite cladding Fe–Al bimetal: Effective removal of nitrate and by-products from wastewater. Environmental Research, 2020, 184, 109336.	3.7	24
11	Multifunctional quaternized chitosan@surface plasmon resonance Ag/N-TiO2 core-shell microsphere for synergistic adsorption-photothermal catalysis degradation of low-temperature wastewater and bacteriostasis under visible light. Chemical Engineering Journal, 2020, 393, 124781.	6.6	54
12	Preparation of new materials by ethylene glycol modification and Al(OH)3 coating NZVI to remove sulfides in water. Journal of Hazardous Materials, 2020, 390, 122049.	6.5	26
13	Dual oxygen vacancy defects-mediated efficient electron-hole separation via surface engineering of Ag/Bi2MoO6 nanosheets/TiO2 nanobelts ternary heterostructures. Journal of Industrial and Engineering Chemistry, 2019, 78, 155-163.	2.9	20
14	Surface-defect-rich mesoporous NH2-MIL-125 (Ti)@Bi2MoO6 core-shell heterojunction with improved charge separation and enhanced visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2019, 554, 324-334.	5.0	44
15	A functionalized chitosan wrinkled hollow sphere containing calcium ions: Efficient adsorption of sodium dodecylbenzenesulfonate (SDBS) from aqueous solutions. Journal of Colloid and Interface Science, 2019, 555, 203-213.	5.0	18
16	Mesoporous g-C3N4/Zn–Ti LDH laminated van der Waals heterojunction nanosheets as remarkable visible-light-driven photocatalysts. International Journal of Hydrogen Energy, 2019, 44, 16348-16358.	3.8	49
17	Adsorption of ammonia nitrogen in low temperature domestic wastewater by modification bentonite. Journal of Cleaner Production, 2019, 233, 720-730.	4.6	81
18	All-Solid Z-Scheme Bi–BiOCl/AgCl Heterojunction Microspheres for Improved Electron–Hole Separation and Enhanced Visible Light-Driven Photocatalytic Performance. Langmuir, 2019, 35, 7887-7895.	1.6	39

#	Article	IF	CITATIONS
19	Fe(<scp>ii</scp>) and Mn(<scp>ii</scp>) removal by Ca(<scp>ii</scp>)–manganite (γ-MnOOH)-modified red mud granules in water. RSC Advances, 2019, 9, 10305-10313.	1.7	6
20	Preparation of MgAlFe-LDHs as a deicer corrosion inhibitor to reduce corrosion of chloride ions in deicing salts. Ecotoxicology and Environmental Safety, 2019, 174, 164-174.	2.9	31
21	Surface plasma Ag-decorated single-crystalline TiO2â^x(B) nanorod/defect-rich g-C3N4 nanosheet ternary superstructure 3D heterojunctions as enhanced visible-light-driven photocatalyst. Journal of Colloid and Interface Science, 2019, 542, 63-72.	5.0	31
22	Design and synthesis of a calcium modified quaternized chitosan hollow sphere for efficient adsorption of SDBS. Journal of Hazardous Materials, 2019, 369, 342-352.	6.5	45
23	High-efficiency bacteriostatic material modified by nano zinc oxide and polyelectrolyte diallyl dimethylammonium chloride based on red mud. Colloids and Surfaces B: Biointerfaces, 2019, 177, 260-266.	2.5	7
24	Bifunctional nest-like self-floating microreactor for enhanced photothermal catalysis and biocatalysis. Environmental Science: Nano, 2019, 6, 3551-3559.	2.2	13
25	Assembly of surface-defect single-crystalline strontium titanate nanocubes acting as molecular bricks onto surface-defect single-crystalline titanium dioxide (B) nanorods for efficient visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2019, 537, 441-449.	5.0	10
26	Synergistic effect of surface plasmon resonance, Ti3+ and oxygen vacancy defects on Ag/MoS2/TiO2-x ternary heterojunctions with enhancing photothermal catalysis for low-temperature wastewater degradation. Journal of Hazardous Materials, 2019, 364, 117-124.	6.5	93
27	Bi plasmon-enhanced mesoporous Bi2MoO6/Ti3+ self-doped TiO2 microsphere heterojunctions as efficient visible-light-driven photocatalysts. Journal of Alloys and Compounds, 2018, 750, 659-668.	2.8	34
28	Surface plasmon resonance-enhanced visible-light-driven photocatalysis by Ag nanoparticles decorated S-TiO2â^ nanorods. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 198-204.	2.7	47
29	C,N co-doped porous TiO ₂ hollow sphere visible light photocatalysts for efficient removal of highly toxic phenolic pollutants. Dalton Transactions, 2018, 47, 4877-4884.	1.6	26
30	Plasmon Ag decorated 3D urchinlike N-TiO2â ^{**} x for enhanced visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2018, 521, 102-110.	5.0	25
31	Fe-Ti/Fe (II)-loading on ceramic filter materials for residual chlorine removal from drinking water. Chemosphere, 2018, 200, 405-411.	4.2	7
32	Mesoporous black TiO2-x/Ag nanospheres coupled with g-C3N4 nanosheets as 3D/2D ternary heterojunctions visible light photocatalysts. Journal of Hazardous Materials, 2018, 343, 181-190.	6.5	147
33	Preparation and performance of Fe(II)-akaganeite(\hat{I}^2 -FeOOH) modified red mud granule filter material. Research on Chemical Intermediates, 2018, 44, 7583-7593.	1.3	6
34	Preparation of Ca-Al-Fe deicing salt and modified with sodium methyl silicate for reducing the influence of concrete structure. Construction and Building Materials, 2018, 172, 263-271.	3.2	18
35	Oxygen vacancy-mediated efficient electron-hole separation for C-N-S-tridoped single crystal black TiO2(B) nanorods as visible-light-driven photocatalysts. Applied Surface Science, 2018, 457, 287-294.	3.1	28
36	In-situ N-doped mesoporous black TiO2 with enhanced visible-light-driven photocatalytic performance. Chemical Physics, 2018, 513, 86-93.	0.9	16

#	Article	IF	CITATIONS
37	Simultaneous removal of nitrogen and phosphorus by magnesium-modified calcium silicate core-shell material in water. Ecotoxicology and Environmental Safety, 2018, 163, 656-664.	2.9	16
38	3D urchin-like black TiO _{2â^x} /carbon nanotube heterostructures as efficient visible-light-driven photocatalysts. RSC Advances, 2017, 7, 453-460.	1.7	35
39	Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance. Scientific Reports, 2017, 7, 41978.	1.6	211
40	Fluoride removal from liquid phase by Fe-Al-La trimetal hydroxides adsorbent prepared by iron and aluminum leaching from red mud. Journal of Molecular Liquids, 2017, 237, 164-172.	2.3	52
41	Preparation and performance of ceramic filter material by recovered silicon dioxide as major leached component from red mud. Ceramics International, 2017, 43, 7565-7572.	2.3	27
42	Design and Synthesis of a Novel Silicate Material from Red Mud for Simultaneous Removal of Nitrogen and Phosphorus in Wastewater. ACS Sustainable Chemistry and Engineering, 2017, 5, 11422-11432.	3.2	32
43	In-situ C-N-S-tridoped single crystal black TiO2 nanosheets with exposed {001} facets as efficient visible-light-driven photocatalysts. Applied Catalysis B: Environmental, 2017, 219, 572-579.	10.8	61
44	Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2017, 201, 119-127.	10.8	310
45	Bromate removal by Fe(<scp>ii</scp>)–akaganeite (β-FeOOH) modified red mud granule material. RSC Advances, 2016, 6, 28257-28262.	1.7	15
46	Ti ³⁺ Self-Doped Blue TiO ₂ (B) Single-Crystalline Nanorods for Efficient Solar-Driven Photocatalytic Performance. ACS Applied Materials & Solar-Driven Photocatalytic Performance Photocatalytic Photocatalytic Performance Photocatalytic Photoc	4.0	151
47	Ni ²⁺ and Ti ³⁺ co-doped porous black anatase TiO ₂ with unprecedented-high visible-light-driven photocatalytic degradation performance. RSC Advances, 2015, 5, 107150-107157.	1.7	59