Jian Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3989940/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(II) ion and sulfide anion in aqueous media and its imaging in live cells. Sensors and Actuators B: Chemical, 2016, 224, 298-306.	7.8	201
2	Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe. Biosensors and Bioelectronics, 2018, 99, 318-324.	10.1	152
3	Two-photon fluorescent probe for lysosome-targetable hypochlorous acid detection within living cells. Sensors and Actuators B: Chemical, 2018, 255, 2223-2231.	7.8	111
4	Amphiphilic BODIPY-Based Photoswitchable Fluorescent Polymeric Nanoparticles for Rewritable Patterning and Dual-Color Cell Imaging. Macromolecules, 2015, 48, 3500-3508.	4.8	91
5	<i>In vivo</i> imaging of hepatocellular nitric oxide using a hepatocyte-targeting fluorescent sensor. Chemical Communications, 2018, 54, 7231-7234.	4.1	90
6	Reversible fluorescence modulation of spiropyran-functionalized carbon nanoparticles. Journal of Materials Chemistry C, 2013, 1, 3716.	5.5	86
7	A Core–Shell Nanoparticle Approach to Photoreversible Fluorescence Modulation of a Hydrophobic Dye in Aqueous Media. Chemistry - A European Journal, 2008, 14, 4851-4860.	3.3	83
8	Photoreversible Fluorescent Modulation of Nanoparticles via Oneâ€Step Miniemulsion Polymerization. Small, 2009, 5, 970-978.	10.0	81
9	Reversible fluorescence modulation through energy transfer with ABC triblock copolymer micelles as scaffolds. Chemical Communications, 2008, , 5580.	4.1	77
10	Self-Assembly of a Dual-Targeting and Self-Calibrating Ratiometric Polymer Nanoprobe for Accurate Hypochlorous Acid Imaging. ACS Applied Materials & Interfaces, 2020, 12, 45822-45829.	8.0	75
11	Synthesis and Characterization of Novel Reversible Photoswitchable Fluorescent Polymeric Nanoparticles via One-Step Miniemulsion Polymerization. Journal of Physical Chemistry B, 2011, 115, 3354-3362.	2.6	67
12	Colorimetric and ultra-sensitive fluorescence resonance energy transfer determination of H2O2 and glucose by multi-functional Au nanoclusters. Analyst, The, 2014, 139, 1498.	3.5	66
13	Photoswitchable AIE nanoprobe for lysosomal hydrogen sulfide detection and reversible dual-color imaging. Sensors and Actuators B: Chemical, 2018, 272, 340-347.	7.8	66
14	Photoreversible Fluorescence Modulation of a Rhodamine Dye by Supramolecular Complexation with Photosensitive Cyclodextrin. Angewandte Chemie - International Edition, 2007, 46, 7015-7018.	13.8	64
15	Design and Synthesis of FRET-Mediated Multicolor and Photoswitchable Fluorescent Polymer Nanoparticles with Tunable Emission Properties. Journal of Physical Chemistry B, 2012, 116, 4354-4362.	2.6	64
16	Novel fluorescent polymeric nanoparticles for highly selective recognition of copper ion and sulfide anion in water. Sensors and Actuators B: Chemical, 2015, 206, 230-238.	7.8	59
17	Photoswitchable ultrahigh-brightness red fluorescent polymeric nanoparticles for information encryption, anti-counterfeiting and bioimaging. Journal of Materials Chemistry C, 2019, 7, 11515-11521.	5.5	57
18	Polymer nanoparticle-based ratiometric fluorescent probe for imaging Hg2+ ions in living cells. Sensors and Actuators B: Chemical, 2017, 242, 818-824.	7.8	56

#	Article	IF	CITATIONS
19	From a Molecular Toolbox to a Toolbox for Photoswitchable Fluorescent Polymeric Nanoparticles. Advanced Functional Materials, 2018, 28, 1804759.	14.9	56
20	Dual photochromics-contained photoswitchable multistate fluorescent polymers for advanced optical data storage, encryption, and photowritable pattern. Chemical Engineering Journal, 2021, 425, 131557.	12.7	56
21	Recent Progress in Metal–Organic Framework (MOF) Based Luminescent Chemodosimeters. Nanomaterials, 2019, 9, 974.	4.1	52
22	Cross-Linking Induced Emission of Polymer Micelles for High-Contrast Visualization Level 3 Details of Latent Fingerprints. ACS Applied Materials & Interfaces, 2022, 14, 16746-16754.	8.0	49
23	Self-Assembled Fluorescent Bovine Serum Albumin Nanoprobes for Ratiometric pH Measurement inside Living Cells. ACS Applied Materials & Interfaces, 2016, 8, 9629-9634.	8.0	47
24	Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. Polymer Chemistry, 2017, 8, 5795-5802.	3.9	47
25	Photoswitchable fluorescent polymeric nanoparticles for rewritable fluorescence patterning and intracellular dual-color imaging with AIE-based fluorogens as FRET donors. Polymer Chemistry, 2017, 8, 4849-4855.	3.9	46
26	Ratiometric fluorescent sensing of endogenous hypochlorous acid in lysosomes using AIE-based polymeric nanoprobe. Sensors and Actuators B: Chemical, 2019, 282, 1-8.	7.8	45
27	Study on the interaction between dihydromyricetin and bovine serum albumin by spectroscopic techniques. Journal of Molecular Structure, 2011, 985, 407-412.	3.6	44
28	A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core–shell fluorescent nanoparticles. Nanotechnology, 2009, 20, 365502.	2.6	43
29	Fabrication and Physical Properties of Gelatin/Sodium Alginate/Hyaluronic Acid Composite Wound Dressing Hydrogel. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 318-325.	2.2	43
30	Study of the interaction between N-confused porphyrin and bovine serum albumin by fluorescence spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 78, 1329-1335.	3.9	41
31	One-pot fabrication of polymer nanoparticle-based chemosensors for Cu2+ detection in aqueous media. Polymer Chemistry, 2013, 4, 2325.	3.9	41
32	Study on the interaction between salvianic acid A sodium and bovine serum albumin by spectroscopic methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 78, 1535-1539.	3.9	35
33	Synthesis and photochromic property of nanoparticles with spiropyran moieties via one-step miniemulsion polymerization. Polymer Bulletin, 2008, 61, 425-434.	3.3	34
34	Single-dye-doped fluorescent nanoprobe enables self-referenced ratiometric imaging of hypochlorous acid in lysosomes. Sensors and Actuators B: Chemical, 2020, 304, 127299.	7.8	34
35	One-pot fabrication of amphiphilic photoswitchable thiophene-based fluorescent polymer dots. Polymer Chemistry, 2013, 4, 773-781.	3.9	33
36	Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH. Journal of Colloid and Interface Science, 2016, 484, 298-307.	9.4	32

#	Article	IF	CITATIONS
37	One-pot synthesis of amphiphilic reversible photoswitchable fluorescent nanoparticles and their fluorescence modulation properties. Polymer Chemistry, 2012, 3, 685.	3.9	31
38	Amplified Split Aptamer Sensor Delivered Using Block Copolymer Nanoparticles for Small Molecule Imaging in Living Cells. ACS Sensors, 2018, 3, 2526-2531.	7.8	30
39	Reversibly Photoswitchable Tristate Fluorescence within a Single Polymeric Nanoparticle. Advanced Optical Materials, 2021, 9, 2101227.	7.3	30
40	Rational design of ratiometric and lysosome-targetable AIE dots for imaging endogenous HClO in live cells. Materials Chemistry Frontiers, 2019, 3, 203-208.	5.9	29
41	A highly selective fluorescent and colorimetric chemosensor for Hg ²⁺ based on a new rhodamine derivative. Analytical Methods, 2016, 8, 1964-1967.	2.7	28
42	Red carbon dots as label-free two-photon fluorescent nanoprobes for imaging of formaldehyde in living cells and zebrafishes. Chinese Chemical Letters, 2020, 31, 759-763.	9.0	28
43	New insight into electropolymerization of melamine. I: Chloride promoted growth of polymelamine in different pH medium. Electrochimica Acta, 2018, 271, 312-318.	5.2	27
44	Engineering of a zero cross-talk fluorescent polymer nanoprobe for self-referenced ratiometric imaging of lysosomal hypochlorous acid in living cells. Materials Chemistry Frontiers, 2020, 4, 862-868.	5.9	26
45	Construction of Energy Transfer Systems within Nanosized Polymer Micelles and their Fluorescence Modulation Properties. ChemPhysChem, 2010, 11, 1036-1043.	2.1	25
46	Gold nanocluster-based light-controlled fluorescence molecular switch. Journal of Materials Chemistry, 2011, 21, 5867.	6.7	25
47	Selective visualization of endogenous hydrogen sulfide in lysosomes using aggregation induced emission dots. Polymer Chemistry, 2017, 8, 7271-7278.	3.9	25
48	A silica nanoparticle-based dual-responsive ratiometric probe for visualizing hypochlorite and temperature with distinct fluorescence signals. Sensors and Actuators B: Chemical, 2017, 251, 533-541.	7.8	25
49	A New Design Strategy for the Synthesis of Unsubstituted Polythiophene with Defined High Molecular Weight. Macromolecules, 2012, 45, 5108-5113.	4.8	24
50	One-pot fabrication of FRET-based fluorescent probe for detecting copper ion and sulfide anion in 100% aqueous media. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 177, 63-68.	3.9	24
51	A near-infrared fluorescent sensor with large Stokes shift for rapid and highly selective detection of thiophenols in water samples and living cells. Analytical and Bioanalytical Chemistry, 2018, 410, 2001-2009.	3.7	23
52	Recent Progress in the Development of Fluorescent Probes for Thiophenol. Molecules, 2019, 24, 3716.	3.8	22
53	Synthesis of Star‧haped Poly(ϵ aprolactone)â€bâ€Poly(styrene) Block Copolymer by Combining Ringâ€Opening Polymerization and Atom Transfer Radical Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 1247-1257.	2.2	21
54	Real-time monitoring of endogenous cysteine levels in living cells using a CD-based ratiometric fluorescent nanoprobe. Analytical and Bioanalytical Chemistry, 2018, 410, 4379-4386.	3.7	21

#	Article	IF	CITATIONS
55	Switchable single fluorescent polymeric nanoparticles for stable white-light generation. Journal of Materials Chemistry C, 2018, 6, 9897-9902.	5.5	21
56	Mitochondria-targeted fluorescent probe based on vibration-induced emission for real-time monitoring mitophagy-speciff viscosity dynamic. Chinese Chemical Letters, 2020, 31, 2897-2902.	9.0	20
57	Room temperature Zinc-metallation of cationic porphyrin at graphene surface and enhanced photoelectrocatalytic activity. Applied Surface Science, 2018, 434, 756-762.	6.1	19
58	Redox-responsive Pickering emulsion derived from the fabricated sheddable polymeric micelles. Polymer, 2018, 158, 1-9.	3.8	19
59	Influence of Nano-Bioactive Glass (NBG) Content on Properties of Gelatin-Hyaluronic Acid/NBG Composite Scaffolds. Journal of Macromolecular Science - Physics, 2014, 53, 1145-1155.	1.0	18
60	An AIE fluorescent probe with a naphthalimide derivative and its application for detection of hypochlorite and imaging inside living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117760.	3.9	18
61	Chemomechanical-force-induced folding–unfolding directly controls distinct fluorescence dual-color switching. Chemical Communications, 2017, 53, 4993-4996.	4.1	17
62	Selective ratiometric fluorescence detection of hypochlorite by using aggregation-induced emission dots. Analytical and Bioanalytical Chemistry, 2019, 411, 1979-1988.	3.7	17
63	Synthesis and Characterization of a novel star shaped Rod-Coil Block Copolymer. Polymer Bulletin, 2004, 52, 401-408.	3.3	16
64	Block copolymer nanoparticles-based fluorescent sensor for ultrasensitive detection of tyrosinase activity and inhibitor. Sensors and Actuators B: Chemical, 2019, 298, 126935.	7.8	14
65	A rational design of a cancer-specific and lysosome-targeted fluorescence nanoprobe for glutathione imaging in living cells. Materials Advances, 2020, 1, 1739-1744.	5.4	14
66	Preparation and application of multi-wavelength-regulated multi-state photoswitchable fluorescent polymer nanoparticles. Dyes and Pigments, 2022, 197, 109919.	3.7	14
67	Photo-pH dual stimuli-responsive multicolor fluorescent polymeric nanoparticles for multicolor security ink, optical data encryption and zebrafish imaging. Dyes and Pigments, 2022, 205, 110588.	3.7	14
68	Study on the electrodissolution and roughening of a palladium electrode in chloride containing solutions. Journal of Electroanalytical Chemistry, 2011, 660, 80-84.	3.8	13
69	<i>In Vivo</i> Monitoring of pH in Subacute PD Mouse Brains with a Ratiometric Electrochemical Microsensor Based on Poly(melamine) Films. ACS Sensors, 2022, 7, 235-244.	7.8	12
70	The investigation of the interaction between edaravone and bovine serum albumin by spectroscopic approaches. Journal of Luminescence, 2011, 131, 1510-1514.	3.1	11
71	A novel naphthofluorescein-based probe for ultrasensitive point-of-care testing of zinc(II) ions and its bioimaging in living cells and zebrafishes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117949.	3.9	11
72	Photoreversible Fluorescence Modulation of a Rhodamine Dye by Supramolecular Complexation with Photosensitive Cyclodextrin. Angewandte Chemie, 2007, 119, 7145-7148.	2.0	10

#	Article	IF	CITATIONS
73	Fabrication of Novel Polymer Nanoparticle-Based Fluorescence Resonance Energy Transfer Systems and their Tunable Fluorescence Properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 219-226.	2.2	10
74	Nonequilibrium Transesterification for Programming a Material's Stiffening. ACS Applied Polymer Materials, 2019, 1, 3227-3232.	4.4	10
75	Folding fluorescent probes for self-reporting transesterification in dynamic polymer networks. Materials Horizons, 2021, 8, 1481-1487.	12.2	10
76	Photochromic RAFT reagent helps construct superior photoswitchable fluorescent polymer nanoparticles for rewritable fluorescence patterning and intracellular dual-color imaging. Polymer Chemistry, 2017, 8, 6520-6526.	3.9	9
77	A water-soluble fluorescent probe for detecting creatinine in totally aqueous media and imaging exogenous creatinine in living cells. Analytical and Bioanalytical Chemistry, 2019, 411, 2545-2553.	3.7	9
78	A ratiometric fluorescent probe for the quantitative detection of styrene in air. Chemical Communications, 2020, 56, 13037-13039.	4.1	9
79	Zero-crosstalk and color-specific photoswitching of dual-emissive polymer nanoparticles for multiple applications. Dyes and Pigments, 2021, 191, 109370.	3.7	9
80	Cellular and mitochondrial dual-targeted nanoprobe with near-infrared emission for activatable tumor imaging and photodynamic therapy. Sensors and Actuators B: Chemical, 2021, 346, 130451.	7.8	9
81	Aptamer functionalization and high-contrast reversible dual-color photoswitching fluorescence of polymeric nanoparticles for latent fingerprints imaging. Sensors and Actuators B: Chemical, 2022, 367, 132049.	7.8	9
82	Electroanalytical Sensors and Methods for Assays and Studies of Neurological Biomarkers. Electroanalysis, 2014, 26, 1236-1248.	2.9	8
83	Rational design of a HA-AuNPs@AIED nanoassembly for activatable fluorescence detection of HAase and imaging in tumor cells. Analytical Methods, 2021, 13, 2030-2036.	2.7	8
84	Modulation of Fluorescence of a Terbium-Complex-Containing Polymer by Gold Nanoparticles through Energy Transfer. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 679-685.	3.7	7
85	Biocompatibility <i>In-vitro</i> of Gel/HA Composite Scaffolds Containing Nano-Bioactive Glass for Tissue Engineering. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 1048-1053.	2.2	7
86	Preparation of Fluorescence Tunable Polymer Nanoparticles by One-step Mini-emulsion. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 1135-1141.	2.2	6
87	Fabrication of Water-soluble Fluorescent Polymeric Micelles for Selective Detection of Hg ²⁺ in Blood Serum. Analytical Sciences, 2017, 33, 591-597.	1.6	6
88	Spherulite Formation of Lipophilic Surfactant Induced by Noncrystalline Amphiphilic Diblock Copolymer. Crystal Growth and Design, 2008, 8, 4589-4595.	3.0	5
89	Perylene diimide-based supramolecular polymer with temperature-sensitive ratiometric fluorescence responsiveness in solution and gels. Materials Advances, 2020, 1, 1330-1336.	5.4	5
90	Fabrication of Novel Reversible Photoswitchable Fluorescent Nanoparticles. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 637-643.	2.2	4

Jian Chen

#	Article	IF	CITATIONS
91	Dual function of Eosin Y in miniemulsion polymerization: Stabilizer and FRET acceptor. European Polymer Journal, 2020, 134, 109862.	5.4	4
92	New insight into electropolymerization of melamine. II: Low onset potential deposition of polymelamine with trace active bromine. Electrochimica Acta, 2022, 410, 139991.	5.2	3
93	Light-Induced Anisotropy in Azobenzene Doped Copolymer Films. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 268-273.	2.2	2
94	Spectroscopic investigation of the interaction between diperoxovanadate complexes and benzimidazole-like ligands. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 816-820.	3.9	2
95	Synthesis of Cholestan -3-One Derivatives Possessing a C-2 Spiro-Oxindole Substituent. Journal of Chemical Research, 2018, 42, 15-19.	1.3	2
96	The synthesis and preliminary cytotoxicity evaluation of hexahydrodispiro[indole-3,3′-indolizine-2′,3″-piperidine]-2(1H),4″-dione compounds. Journal of Chemic Research, 2019, 43, 287-292.	calı.3	1
97	Photodegradation of Cationic and Anioic Dyes by pH-Dependent Dispersion of Amphoteric g-C3N4 Nanosheets. Journal of Nanoscience and Nanotechnology, 2020, 20, 6215-6221.	0.9	1
98	Oneâ€pot preparation of multicolor polymeric nanoparticles with high brightness by single wavelength excitation. Journal of Applied Polymer Science, 2015, 132, .	2.6	0
99	Effect of Supra-Molecular Interaction on the Intramolecular Proton Transfer of 2-(2-Aminophenyl)benzothiazole. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 624-630.	4.9	0