Itaru Hamachi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3988814/publications.pdf

Version: 2024-02-01

275 papers 16,625 citations

69 h-index 117 g-index

295 all docs

295
docs citations

295 times ranked 13665 citing authors

#	Article	IF	Citations
1	Semi-wet peptide/protein array using supramolecular hydrogel. Nature Materials, 2004, 3, 58-64.	27. 5	546
2	Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel†enzyme hybrids. Nature Chemistry, 2014, 6, 511-518.	13.6	370
3	Molecular Recognition and Fluorescence Sensing of Monophosphorylated Peptides in Aqueous Solution by Bis(zinc(II)â^dipicolylamine)-Based Artificial Receptors. Journal of the American Chemical Society, 2004, 126, 2454-2463.	13.7	358
4	First Artificial Receptors and Chemosensors toward Phosphorylated Peptide in Aqueous Solution. Journal of the American Chemical Society, 2002, 124, 6256-6258.	13.7	347
5	Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5400-5405.	7.1	344
6	First Thermally Responsive Supramolecular Polymer Based on Glycosylated Amino Acid. Journal of the American Chemical Society, 2002, 124, 10954-10955.	13.7	337
7	Ligand-directed tosyl chemistry for protein labeling in vivo. Nature Chemical Biology, 2009, 5, 341-343.	8.0	318
8	Turn-On Fluorescence Sensing of Nucleoside Polyphosphates Using a Xanthene-Based Zn(II) Complex Chemosensor. Journal of the American Chemical Society, 2008, 130, 12095-12101.	13.7	302
9	Supramolecular Hydrogel Exhibiting Four Basic Logic Gate Functions To Fine-Tune Substance Release. Journal of the American Chemical Society, 2009, 131, 5580-5585.	13.7	295
10	Protein Organic Chemistry and Applications for Labeling and Engineering in Live ell Systems. Angewandte Chemie - International Edition, 2013, 52, 4088-4106.	13.8	284
11	Molecular recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(<scp>ii</scp>)–Dpa complexes. Chemical Communications, 2009, , 141-152.	4.1	239
12	Rational Design of FRET-Based Ratiometric Chemosensors for in Vitro and in Cell Fluorescence Analyses of Nucleoside Polyphosphates. Journal of the American Chemical Society, 2010, 132, 13290-13299.	13.7	230
13	Chemistry for Covalent Modification of Endogenous/Native Proteins: From Test Tubes to Complex Biological Systems. Journal of the American Chemical Society, 2019, 141, 2782-2799.	13.7	222
14	Photo Gel–Sol/Sol–Gel Transition and Its Patterning of a Supramolecular Hydrogel as Stimuliâ€Responsive Biomaterials. Chemistry - A European Journal, 2008, 14, 3977-3986.	3.3	208
15	Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nature Methods, 2013, 10, 1232-1238.	19.0	207
16	Self-assembling nanoprobes that display off/on 19F nuclear magnetic resonance signals for protein detection and imaging. Nature Chemistry, 2009, 1, 557-561.	13.6	204
17	Development of Highly Sensitive Fluorescent Probes for Detection of Intracellular Copper(I) in Living Systems. Journal of the American Chemical Society, 2010, 132, 5938-5939.	13.7	203
18	Fluorescence Imaging of Intracellular Cadmium Using a Dual-Excitation Ratiometric Chemosensor. Journal of the American Chemical Society, 2008, 130, 12564-12565.	13.7	197

#	Article	IF	CITATIONS
19	In situ real-time imaging of self-sorted supramolecular nanofibres. Nature Chemistry, 2016, 8, 743-752.	13.6	191
20	Rational Molecular Design of Stimulusâ€Responsive Supramolecular Hydrogels Based on Dipeptides. Advanced Materials, 2011, 23, 2819-2822.	21.0	183
21	Molecular Recognition in a Supramolecular Hydrogel to Afford a Semi-Wet Sensor Chip. Journal of the American Chemical Society, 2004, 126, 12204-12205.	13.7	175
22	Bis(Dpa-ZnII) Appended Xanthone: Excitation Ratiometric Chemosensor for Phosphate Anions. Angewandte Chemie - International Edition, 2006, 45, 5518-5521.	13.8	174
23	MCMâ^'Enzymeâ^'Supramolecular Hydrogel Hybrid as a Fluorescence Sensing Material for Polyanions of Biological Significance. Journal of the American Chemical Society, 2009, 131, 5321-5330.	13.7	168
24	Fluorescent BODIPY-Based Zn(II) Complex as a Molecular Probe for Selective Detection of Neurofibrillary Tangles in the Brains of Alzheimer's Disease Patients. Journal of the American Chemical Society, 2009, 131, 6543-6548.	13.7	168
25	Oligo-Asp Tag/Zn(II) Complex Probe as a New Pair for Labeling and Fluorescence Imaging of Proteins. Journal of the American Chemical Society, 2006, 128, 10452-10459.	13.7	166
26	Ligand-Directed Acyl Imidazole Chemistry for Labeling of Membrane-Bound Proteins on Live Cells. Journal of the American Chemical Society, 2012, 134, 3961-3964.	13.7	161
27	Montmorilloniteâ^'Supramolecular Hydrogel Hybrid for Fluorocolorimetric Sensing of Polyamines. Journal of the American Chemical Society, 2011, 133, 1670-1673.	13.7	159
28	Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches. Accounts of Chemical Research, 2017, 50, 740-750.	15.6	159
29	Specific Cell Surface Protein Imaging by Extended Self-Assembling Fluorescent Turn-on Nanoprobes. Journal of the American Chemical Society, 2012, 134, 13386-13395.	13.7	158
30	pH-Responsive Shrinkage/Swelling of a Supramolecular Hydrogel Composed of Two Small Amphiphilic Molecules. Chemistry - A European Journal, 2005, 11, 1130-1136.	3.3	156
31	An adaptive supramolecular hydrogel comprising self-sorting double nanofibre networks. Nature Nanotechnology, 2018, 13, 165-172.	31.5	151
32	Organelle-Localizable Fluorescent Chemosensors for Site-Specific Multicolor Imaging of Nucleoside Polyphosphate Dynamics in Living Cells. Journal of the American Chemical Society, 2012, 134, 18779-18789.	13.7	148
33	Cooperation between Artificial Receptors and Supramolecular Hydrogels for Sensing and Discriminating Phosphate Derivatives. Journal of the American Chemical Society, 2005, 127, 11835-11841.	13.7	143
34	A Fluorescent Lectin Array Using Supramolecular Hydrogel for Simple Detection and Pattern Profiling for Various Glycoconjugates. Journal of the American Chemical Society, 2006, 128, 10413-10422.	13.7	139
35	Combinatorial Library of Low Molecular-Weight Organo- and Hydrogelators Based on Glycosylated Amino Acid Derivatives by Solid-Phase Synthesis. Chemistry - A European Journal, 2003, 9, 976-983.	3.3	134
36	Rapid labelling and covalent inhibition of intracellular native proteins using ligand-directed N-acyl-N-alkyl sulfonamide. Nature Communications, 2018, 9, 1870.	12.8	133

#	Article	IF	CITATIONS
37	Construction of Artificial Photosynthetic Reaction Centers on a Protein Surface:Â Vectorial, Multistep, and Proton-Coupled Electron Transfer for Long-Lived Charge Separation. Journal of the American Chemical Society, 2000, 122, 241-253.	13.7	132
38	Target-Specific Chemical Acylation of Lectins by Ligand-Tethered DMAP Catalysts. Journal of the American Chemical Society, 2008, 130, 245-251.	13.7	131
39	Efficient fluorescent ATP-sensing based on coordination chemistry under aqueous neutral conditions. Tetrahedron Letters, 2002, 43, 6193-6195.	1.4	125
40	Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells. Chemical Society Reviews, 2015, 44, 4454-4471.	38.1	121
41	One-Pot and Sequential Organic Chemistry on an Enzyme Surface to Tether a Fluorescent Probe at the Proximity of the Active Site with Restoring Enzyme Activity. Journal of the American Chemical Society, 2006, 128, 3273-3280.	13.7	120
42	Chemically Reactive Supramolecular Hydrogel Coupled with a Signal Amplification System for Enhanced Analyte Sensitivity. Journal of the American Chemical Society, 2015, 137, 3360-3365.	13.7	119
43	Erythroselectivity in addition of \hat{l}^3 -substituted allylsilanes to aldehydes in the presence of titanium chloride. Tetrahedron Letters, 1983, 24, 2865-2868.	1.4	114
44	Cross-Linking Strategy for Molecular Recognition and Fluorescent Sensing of a Multi-phosphorylated Peptide in Aqueous Solution. Journal of the American Chemical Society, 2003, 125, 10184-10185.	13.7	107
45	Disassembly-Driven Turn-On Fluorescent Nanoprobes for Selective Protein Detection. Journal of the American Chemical Society, 2010, 132, 7291-7293.	13.7	107
46	A General Semisynthetic Method for Fluorescent Saccharide-Biosensors Based on a Lectin. Journal of the American Chemical Society, 2000, 122, 12065-12066.	13.7	105
47	Bacteria Interface Pickering Emulsions Stabilized by Self-assembled Bacteria–Chitosan Network. Langmuir, 2012, 28, 5729-5736.	3.5	105
48	Chemical Cell-Surface Receptor Engineering Using Affinity-Guided, Multivalent Organocatalysts. Journal of the American Chemical Society, 2011, 133, 12220-12228.	13.7	102
49	Non-enzymatic Covalent Protein Labeling Using a Reactive Tag. Journal of the American Chemical Society, 2007, 129, 15777-15779.	13.7	101
50	Design of Dual-Emission Chemosensors for Ratiometric Detection of ATP Derivatives. Chemistry - an Asian Journal, 2006, 1, 555-563.	3.3	99
51	Recent Progress in Strategies for the Creation of Proteinâ€Based Fluorescent Biosensors. ChemBioChem, 2009, 10, 2560-2577.	2.6	98
52	Synthesis of side-chain derivatives of 2,2'-bipyridine. Journal of Organic Chemistry, 1989, 54, 1731-1735.	3.2	95
53	Selective Covalent Labeling of Tag-Fused GPCR Proteins on Live Cell Surface with a Synthetic Probe for Their Functional Analysis. Journal of the American Chemical Society, 2010, 132, 9301-9309.	13.7	93
54	Recent Progress in Design of Protein-Based Fluorescent Biosensors and Their Cellular Applications. ACS Chemical Biology, 2014, 9, 2708-2717.	3.4	93

#	Article	IF	CITATIONS
55	Selective and reversible modification of kinase cysteines with chlorofluoroacetamides. Nature Chemical Biology, 2019, 15, 250-258.	8.0	90
56	Supramolecular hydrogel-based protein and chemosensor array. Lab on A Chip, 2010, 10, 3325.	6.0	89
57	Effective Disruption of Phosphoproteinâ^'Protein Surface Interaction Using Zn(II) Dipicolylamine-Based Artificial Receptors via Two-Point Interaction. Journal of the American Chemical Society, 2006, 128, 2052-2058.	13.7	88
58	Traceless Affinity Labeling of Endogenous Proteins for Functional Analysis in Living Cells. Accounts of Chemical Research, 2012, 45, 1460-1469.	15.6	87
59	Suzuki coupling for protein modification. Tetrahedron Letters, 2005, 46, 3301-3305.	1.4	85
60	Native FKBP12 Engineering by Ligand-Directed Tosyl Chemistry: Labeling Properties and Application to Photo-Cross-Linking of Protein Complexes in Vitro and in Living Cells. Journal of the American Chemical Society, 2012, 134, 2216-2226.	13.7	81
61	Synthetic Self-Localizing Ligands That Control the Spatial Location of Proteins in Living Cells. Journal of the American Chemical Society, 2013, 135, 12684-12689.	13.7	80
62	Label-Free, Real-Time Glycosyltransferase Assay Based on a Fluorescent Artificial Chemosensor. Angewandte Chemie - International Edition, 2006, 45, 665-668.	13.8	77
63	Quenched Ligand-Directed Tosylate Reagents for One-Step Construction of Turn-On Fluorescent Biosensors. Journal of the American Chemical Society, 2009, 131, 9046-9054.	13.7	77
64	Functional conversion of myoglobin bound to synthetic bilayer membranes: from dioxygen storage protein to redox enzyme. Journal of the American Chemical Society, 1991, 113, 9625-9630.	13.7	76
65	Validating subcellular thermal changes revealed by fluorescent thermosensors. Nature Methods, 2015, 12, 801-802.	19.0	76
66	Supramolecular hydrogel capsule showing prostate specific antigen-responsive function for sensing and targeting prostate cancer cells. Chemical Science, 2010, 1, 491.	7.4	75
67	Chemical labelling for visualizing native AMPA receptors in live neurons. Nature Communications, 2017, 8, 14850.	12.8	75
68	Recent Progress in Chemical Modification of Proteins. Analytical Sciences, 2019, 35, 5-27.	1.6	74
69	Enhanced N-Demethylase Activity of Cytochrome c Bound to a Phosphate-Bearing Synthetic Bilayer Membrane. Journal of the American Chemical Society, 1994, 116, 8811-8812.	13.7	73
70	Photo-responsive gel droplet as a nano- or pico-litre container comprising a supramolecular hydrogel. Chemical Communications, 2008, , 1545.	4.1	72
71	Design of a Hybrid Biosensor for Enhanced Phosphopeptide Recognition Based on a Phosphoprotein Binding Domain Coupled with a Fluorescent Chemosensor. Journal of the American Chemical Society, 2007, 129, 6232-6239.	13.7	71
72	Systematic Study of Protein Detection Mechanism of Self-Assembling ¹⁹ F NMR/MRI Nanoprobes toward Rational Design and Improved Sensitivity. Journal of the American Chemical Society, 2011, 133, 11725-11731.	13.7	70

#	Article	IF	CITATIONS
73	Coupling a Natural Receptor Protein with an Artificial Receptor to Afford a Semisynthetic Fluorescent Biosensor. Journal of the American Chemical Society, 2004, 126, 490-495.	13.7	69
74	Fluorophore Labeling of Native FKBP12 by Ligand-Directed Tosyl Chemistry Allows Detection of Its Molecular Interactions in Vitro and in Living Cells. Journal of the American Chemical Society, 2013, 135, 6782-6785.	13.7	68
75	pH Nanosensor Using Electronic Spins in Diamond. ACS Nano, 2019, 13, 11726-11732.	14.6	68
76	Ligand-directed dibromophenyl benzoate chemistry for rapid and selective acylation of intracellular natural proteins. Chemical Science, 2015, 6, 3217-3224.	7.4	67
77	Site-specific Discrimination by Cyanovirin-N for α-Linked Trisaccharides Comprising the Three Arms of Man8 and Man9. Journal of Molecular Biology, 2002, 322, 881-889.	4.2	65
78	Chemical Tools for Endogenous Protein Labeling and Profiling. Cell Chemical Biology, 2020, 27, 970-985.	5.2	65
79	Construction of Artificial Signal Transducers on a Lectin Surface by Post-Photoaffinity-Labeling Modification for Fluorescent Saccharide Biosensors. Chemistry - A European Journal, 2003, 9, 3660-3669.	3.3	64
80	Site-specific covalent labeling of His-tag fused proteins with a reactive Ni(ii)–NTA probe. Chemical Communications, 2009, , 5880.	4.1	64
81	Intracellular Protein-Responsive Supramolecules: Protein Sensing and In-Cell Construction of Inhibitor Assay System. Journal of the American Chemical Society, 2014, 136, 16635-16642.	13.7	64
82	Double-Modification of Lectin Using Two Distinct Chemistries for Fluorescent Ratiometric Sensing and Imaging Saccharides in Test Tube or in Cell. Journal of the American Chemical Society, 2005, 127, 13253-13261.	13.7	62
83	Light-driven activation of reconstituted myoglobin with a ruthenium tris(2,2'-bipyridine) pendant. Journal of the American Chemical Society, 1993, 115, 10458-10459.	13.7	61
84	Protein Engineering Using Molecular Assembly:Â Functional Conversion of Cytochromecvia Noncovalent Interactions. Journal of the American Chemical Society, 1997, 119, 9096-9102.	13.7	60
85	LDAI-Based Chemical Labeling of Intact Membrane Proteins and Its Pulse-Chase Analysis under Live Cell Conditions. Chemistry and Biology, 2014, 21, 1013-1022.	6.0	60
86	A supramolecular hydrogel containing boronic acid-appended receptor for fluorocolorimetric sensing of polyols with a paper platform. Chemical Communications, 2012, 48, 2716.	4.1	59
87	Organelle membrane-specific chemical labeling and dynamic imaging in living cells. Nature Chemical Biology, 2020, 16, 1361-1367.	8.0	59
88	Direct Observation of the Ferric-Porphyrin Cation Radical as an Intermediate in the Phototriggered Oxidation of Ferric- to Ferryl-Heme Tethered to Ru(bpy)3 in Reconstituted Myoglobin. Journal of the American Chemical Society, 1999, 121, 5500-5506.	13.7	58
89	Twoâ€Photonâ€Responsive Supramolecular Hydrogel for Controlling Materials Motion in Micrometer Space. Angewandte Chemie - International Edition, 2014, 53, 7264-7267.	13.8	57
90	Design and Semisynthesis of Photoactive Myoglobin Bearing Ruthenium Tris(2,2 -bipyridine) Using Cofactor-Reconstitution. Inorganic Chemistry, 1998, 37, 4380-4388.	4.0	55

#	Article	IF	Citations
91	Meterâ€Long and Robust Supramolecular Strands Encapsulated in Hydrogel Jackets. Angewandte Chemie - International Edition, 2012, 51, 1553-1557.	13.8	55
92	Analysis of Cell-Surface Receptor Dynamics through Covalent Labeling by Catalyst-Tethered Antibody. Journal of the American Chemical Society, 2015, 137, 5372-5380.	13.7	55
93	A Set of Organelle-Localizable Reactive Molecules for Mitochondrial Chemical Proteomics in Living Cells and Brain Tissues. Journal of the American Chemical Society, 2016, 138, 7592-7602.	13.7	55
94	Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry. Nature Chemical Biology, 2016, 12, 822-830.	8.0	53
95	Shank and Zinc Mediate an AMPA Receptor Subunit Switch in Developing Neurons. Frontiers in Molecular Neuroscience, 2018, 11, 405.	2.9	53
96	Ru(bpy)3-based artificial receptors toward a protein surface: selective binding and efficient photoreduction of cytochrome c. Chemical Communications, 1999, , 2345-2346.	4.1	52
97	Ligand-directed tosyl chemistry for in situ native protein labeling and engineering in living systems: from basic properties to applications. Current Opinion in Chemical Biology, 2014, 21, 136-143.	6.1	52
98	Sugar sensing utilizing aggregation properties of a boronic-acid-appended porphyrin. Tetrahedron Letters, 1993, 34, 6273-6276.	1.4	51
99	Identification of a New Class of Low Molecular Weight Antagonists against the Chemokine Receptor CXCR4 Having the Dipicolylamineâ^'Zinc(II) Complex Structure. Journal of Medicinal Chemistry, 2006, 49, 3412-3415.	6.4	51
100	Post-assembly Fabrication of a Functional Multicomponent Supramolecular Hydrogel Based on a Self-Sorting Double Network. Journal of the American Chemical Society, 2019, 141, 4997-5004.	13.7	51
101	Semisynthetic Lectin–4-Dimethylaminopyridine Conjugates for Labeling and Profiling Glycoproteins on Live Cell Surfaces. Journal of the American Chemical Society, 2013, 135, 12252-12258.	13.7	50
102	Phosphopeptideâ€Dependent Labeling of 14 â€" 3 â€" 3 ζ Proteins by Fusicoccinâ€Based Flu Probes. Angewandte Chemie - International Edition, 2012, 51, 509-512.	oresgent 13.8	49
103	In-cell covalent labeling of reactive His-tag fused proteins. Chemical Communications, 2013, 49, 5022.	4.1	47
104	Quantitative comparison of protein dynamics in live cells and in vitro by in-cell 19F-NMR. Chemical Communications, 2013, 49, 2801.	4.1	47
105	Protein-responsive protein release of supramolecular/polymer hydrogel composite integrating enzyme activation systems. Nature Communications, 2020, 11, 3859.	12.8	47
106	Heatâ€Induced Morphological Transformation of Supramolecular Nanostructures by Retroâ€Diels–Alder Reaction. Chemistry - A European Journal, 2012, 18, 13091-13096.	3.3	45
107	Supramolecular hydrogels based on bola-amphiphilic glycolipids showing color change in response to glycosidases. Chemical Communications, 2013, 49, 2115-2117.	4.1	45
108	A conditional proteomics approach to identify proteins involved in zinc homeostasis. Nature Methods, 2016, 13, 931-937.	19.0	45

#	Article	IF	CITATIONS
109	Chemical Modification of the Structures and Functions of Proteins by the Cofactor Reconstitution Method. European Journal of Organic Chemistry, 1999, 1999, 539-549.	2.4	44
110	Pyrene Excimer-Based Dual-Emission Detection of a Oligoaspartate Tag-Fused Protein by Using a Znll–DpaTyr Probe. ChemBioChem, 2007, 8, 1370-1372.	2.6	44
111	Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper. Journal of the American Chemical Society, 2020, 142, 14993-15003.	13.7	44
112	Three Distinct Read-Out Modes for Enzyme Activity Can Operate in a Semi-Wet Supramolecular Hydrogel. Chemistry - A European Journal, 2005, 11, 7294-7304.	3.3	43
113	Ratiometric fluorescence detection of a tag fused protein using the dual-emission artificial molecular probe. Chemical Communications, 2006, , 4024.	4.1	43
114	Affinity-Guided Oxime Chemistry for Selective Protein Acylation in Live Tissue Systems. Journal of the American Chemical Society, 2017, 139, 14181-14191.	13.7	43
115	Rigid Luminescent Bisâ€Zinc(II)–Bisâ€Cyclen Complexes for the Detection of Phosphate Anions and Nonâ€Covalent Protein Labeling in Aqueous Solution. European Journal of Organic Chemistry, 2011, 2011, 2807-2817.	2.4	42
116	Fluorescence Sensing of Inorganic Phosphate and Pyrophosphate Using Small Molecular Sensors and Their Applications. Topics in Current Chemistry, 2017, 375, 30.	5.8	42
117	Design and Synthesis of Bis(Zn(II)–Dipicolylamine)-Based Fluorescent Artificial Chemosensors for Phosphorylated Proteins/Peptides. Bulletin of the Chemical Society of Japan, 2006, 79, 35-46.	3.2	41
118	Mechanisms of chemical protein19F-labeling and NMR-based biosensor construction in vitro and in cells using self-assembling ligand-directed tosylate compounds. Chemical Science, 2011, 2, 511-520.	7.4	40
119	Post-photoaffinity labeling modification using aldehyde chemistry to produce a fluorescent lectin toward saccharide-biosensors. Chemical Communications, 2001, , 229-230.	4.1	39
120	Phosphoprotein-Selective Recognition and Staining in SDS-PAGE by Bis-Zn(II)-dipycolylamine-Appended Anthracene. Chemistry Letters, 2004, 33, 1024-1025.	1.3	39
121	Recent Progress of Phosphate Derivatives Recognition Utilizing Artificial Small Molecular Receptors in Aqueous Media., 2007,, 95-125.		39
122	Liveâ€Cell Protein Sulfonylation Based on Proximityâ€driven <i>N</i> â€Sulfonyl Pyridone Chemistry. Angewandte Chemie - International Edition, 2018, 57, 659-662.	13.8	39
123	The Power of Confocal Laser Scanning Microscopy in Supramolecular Chemistry: In situ Realâ€time Imaging of Stimuliâ€Responsive Multicomponent Supramolecular Hydrogels. ChemistryOpen, 2020, 9, 67-79.	1.9	39
124	Layered arrangement of oriented myoglobins in cast films of a phosphate bilayer membrane. Journal of the American Chemical Society, 1990, 112, 6744-6745.	13.7	38
125	Direct Comparison of Electron Transfer Properties of Two Distinct Semisynthetic Triads with Non-Protein Based Triad: Unambiguous Experimental Evidences on Protein Matrix Effects. Chemistry - A European Journal, 2000, 6, 1907-1916.	3.3	37
126	Fluorophore Appended Saccharide Cyclophane:Â Self-Association, Fluorescent Properties, Heterodimers with Cyclodextrins, and Cross-Linking Behavior with Peanut Agglutinin of Dansyl-Modified Saccharide Cyclophane. Journal of Organic Chemistry, 2004, 69, 3509-3516.	3.2	37

#	Article	IF	Citations
127	Stiff, Multistimuliâ€Responsive Supramolecular Hydrogels as Unique Molds for 2D/3D Microarchitectures of Live Cells. Chemistry - an Asian Journal, 2011, 6, 2368-2375.	3.3	37
128	One-step construction of caged carbonic anhydrase I using a ligand-directed acyl imidazole-based protein labeling method. Chemical Science, 2013, 4, 2573.	7.4	37
129	Chemical Profiling of the Endoplasmic Reticulum Proteome Using Designer Labeling Reagents. Journal of the American Chemical Society, 2018, 140, 17060-17070.	13.7	37
130	Enhanced Suppression of a Protein–Protein Interaction in Cells Using Small-Molecule Covalent Inhibitors Based on an <i>N</i> -Acyl- <i>N</i> -alkyl Sulfonamide Warhead. Journal of the American Chemical Society, 2021, 143, 4766-4774.	13.7	37
131	Anisotropic incorporation of lipid-anchored myoglobin into a phospholipid bilayer membrane. Journal of the American Chemical Society, 1993, 115, 4966-4970.	13.7	36
132	Sugar-Responsive Semisynthetic Myoglobin Bearing Phenylboronic Acid Groups as Recognition Sites. Journal of the American Chemical Society, 1994, 116, 7437-7438.	13.7	36
133	Sequence selective dual-emission detection of (i, i \pm 1) bis-phosphorylated peptide using diazastilbene-type Zn(ii)-Dpa chemosensor. Chemical Communications, 2009, , 2848.	4.1	35
134	Specific Detection and Imaging of Enzyme Activity by Signalâ€Amplifiable Selfâ€Assembling ¹⁹ Fâ€MRI Probes. Chemistry - A European Journal, 2013, 19, 12875-12883.	3.3	35
135	Supramolecular Assemblies Responsive to Biomolecules toward Biological Applications. Chemistry - an Asian Journal, 2015, 10, 2026-2038.	3.3	35
136	Preparation of supramolecular hydrogel–enzyme hybrids exhibiting biomolecule-responsive gel degradation. Nature Protocols, 2016, 11, 1744-1756.	12.0	35
137	Zn(II) dipicolylamine-based artificial receptor as a new entry for surface recognition of \hat{l}_{\pm} -helical peptides in aqueous solution. Tetrahedron Letters, 2001, 42, 7059-7062.	1.4	34
138	Peptide Tag/Probe Pairs Based on the Coordination Chemistry for Protein Labeling. Inorganic Chemistry, 2014, 53, 1816-1823.	4.0	34
139	Recognition-driven chemical labeling of endogenous proteins in multi-molecular crowding in live cells. Chemical Communications, 2017, 53, 11972-11983.	4.1	34
140	Development of a Photoactivatable Proximity Labeling Method for the Identification of Nuclear Proteins. Chemistry Letters, 2020, 49, 145-148.	1.3	34
141	Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chemical Reviews, 2021, 121, 14281-14347.	47.7	34
142	Threeâ€Dimensional Encapsulation of Live Cells by Using a Hybrid Matrix of Nanoparticles in a Supramolecular Hydrogel. Chemistry - A European Journal, 2008, 14, 10808-10815.	3.3	33
143	Caged RNase: photoactivation of the enzyme from perfect off-state by site-specific incorporation of 2-nitrobenzyl moiety. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 13-15.	2.2	32
144	Chemical proteomics for subcellular proteome analysis. Current Opinion in Chemical Biology, 2019, 48, 1-7.	6.1	32

#	Article	IF	Citations
145	Enhanced Peroxidase Activity of Cytochrome c by Phosphate Bilayer Membrane. Chemistry Letters, 1994, 23, 1219-1222.	1.3	31
146	Control of seed formation allows two distinct self-sorting patterns of supramolecular nanofibers. Nature Communications, 2020, 11, 4100.	12.8	31
147	Thermally Responsive Supramolecular Nanomeshes for On/Off Switching of the Rotary Motion of F ₁ â€ATPase at the Singleâ€Molecule Level. Chemistry - A European Journal, 2008, 14, 1891-1896.	3.3	30
148	Affinity‣abelingâ€Based Introduction of a Reactive Handle for Natural Protein Modification. Chemistry - an Asian Journal, 2008, 3, 1134-1139.	3.3	30
149	CR1-mediated ATP Release by Human Red Blood Cells Promotes CR1 Clustering and Modulates the Immune Transfer Process. Journal of Biological Chemistry, 2013, 288, 31139-31153.	3.4	30
150	Imaging and Profiling of Proteins under Oxidative Conditions in Cells and Tissues by Hydrogen-Peroxide-Responsive Labeling. Journal of the American Chemical Society, 2020, 142, 15711-15721.	13.7	30
151	A Novel Sugar Sensing System Designed with a Cooperative Action of a Boronic-Acid-Appended Zinc Porphyrin and a 3-Pyridylboronic Acid Axial Ligand. Bulletin of the Chemical Society of Japan, 1997, 70, 699-705.	3.2	29
152	Design of Ratiometric Fluorescent Probes Based on Arene–Metalâ€ion Interactions and Their Application to Cd ^{II} and Hydrogen Sulfide Imaging in Living Cells. Chemistry - A European Journal, 2014, 20, 2184-2192.	3.3	29
153	Imaging-Based Study on Control Factors over Self-Sorting of Supramolecular Nanofibers Formed from Peptide- and Lipid-type Hydrogelators. Bioconjugate Chemistry, 2018, 29, 2058-2067.	3.6	29
154	Guest-Induced Umpolung on a Protein Surface:Â A Strategy for Regulation of Enzymatic Activity. Journal of the American Chemical Society, 2000, 122, 4530-4531.	13.7	28
155	Fluidic supramolecular nano- and microfibres as molecular rails for regulated movement of nanosubstances. Nature Communications, 2010, 1, 20.	12.8	28
156	Design of a multinuclear Zn(<scp>ii</scp>) complex as a new molecular probe for fluorescence imaging of His-tag fused proteins. Chemical Communications, 2012, 48, 594-596.	4.1	28
157	Development of an AND Logicâ€Gateâ€Type Fluorescent Probe for Ratiometric Imaging of Autolysosome in Cell Autophagy. Chemistry - A European Journal, 2015, 21, 2038-2044.	3.3	28
158	Novel saccharide-induced conformational changes in a boronic acid-appended poly(L-lysine) as detected by circular dichroism and fluorescence. Perkin Transactions II RSC, 2000, , 997-1002.	1.1	27
159	Single- or Dual-Mode Switching of Semisynthetic Ribonuclease S′ with an Iminodiacetic Acid Moiety in Response to the Copper(II) Concentration. Chemistry - A European Journal, 1999, 5, 1503-1511.	3.3	26
160	Luminescent Saccharide Biosensor by Using Lanthanide-Bound Lectin Labeled with Fluorescein. ChemBioChem, 2005, 6, 1349-1352.	2.6	26
161	Fluorescence imaging of drug target proteins using chemical probes. Journal of Pharmaceutical Analysis, 2020, 10, 426-433.	5.3	26
162	Phototriggered Spatially Controlled Out-of-Equilibrium Patterns of Peptide Nanofibers in a Self-Sorting Double Network Hydrogel. Journal of the American Chemical Society, 2021, 143, 19532-19541.	13.7	26

#	Article	IF	Citations
163	Design and Synthesis of Sugarâ€Responsive Semiartificial Myoglobin Triggered by Modulation of Apoprotein–Cofactor Interactions. Chemistry - A European Journal, 1997, 3, 1025-1031.	3.3	25
164	Force generation by a propagating wave of supramolecular nanofibers. Nature Communications, 2020, 11, 3541.	12.8	24
165	Ligand-directed two-step labeling to quantify neuronal glutamate receptor trafficking. Nature Communications, 2021, 12, 831.	12.8	24
166	Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells. Nature Chemistry, 2016, 8, 958-967.	13.6	23
167	Cyclodextrin-appended myoglobin as a tool for construction of a donor–sensitizer–acceptor triad on a protein surface. Chemical Communications, 2000, , 1127-1128.	4.1	22
168	Solid phase lipid synthesis (SPLS) for construction of an artificial glycolipid library. Chemical Communications, 2000, , 1281-1282.	4.1	21
169	pH-Responsive Phase Transition of Supramolecular Hydrogel Consisting of Glycosylated Amino Acetate and Carboxylic Acid Derivative. Supramolecular Chemistry, 2003, 15, 521-528.	1.2	21
170	<i>In Situ</i> Construction of Protein-Based Semisynthetic Biosensors. ACS Sensors, 2018, 3, 527-539.	7.8	21
171	Construction of a Fluorescent Screening System of Allosteric Modulators for the GABA _A Receptor Using a Turn-On Probe. ACS Central Science, 2019, 5, 1541-1553.	11.3	21
172	Oriented Intercalation of Myoglobin into Multilayered Films of Synthetic Bilayer Membranes. Chemistry Letters, 1991, 20, 1121-1124.	1.3	20
173	Design and Synthesis of a Transition Metal Responsive Semisynthetic Myoglobin-Bearing Iminodiacetic Acid Moiety. Inorganic Chemistry, 1998, 37, 1592-1597.	4.0	20
174	Selective binding of antimicrobial porphyrins to the hemeâ€receptor IsdHâ€NEAT3 of <i>Staphylococcus aureus</i> . Protein Science, 2013, 22, 942-953.	7.6	20
175	Nucleus-selective Chemical Proteomics Using Hoechst-tagged Reactive Molecules. Chemistry Letters, 2016, 45, 265-267.	1.3	20
176	Metal-induced conformational changes in calix[n]arenes can control the electron-transfer efficiency between porphyrin and [60]fullerene in an on-off manner. Tetrahedron Letters, 1999, 40, 8245-8249.	1.4	19
177	Facile Preparation of Robust Organic Gels by Cross-link of a Sugar-integrated Gelator by Toluene-2,4-diisocyanate. Chemistry Letters, 1999, 28, 225-226.	1.3	19
178	Solid-phase lipid synthesis (SPLS)-2: incidental discovery of organogelators based on artificial glycolipids. Tetrahedron Letters, 2001, 42, 6141-6145.	1.4	19
179	Ligation of Glycophorin A Generates Reactive Oxygen Species Leading to Decreased Red Blood Cell Function. PLoS ONE, 2016, 11, e0141206.	2.5	19
180	Ratiometric Fluorescent Biosensor for Realâ€Time and Labelâ€Free Monitoring of Fine Saccharide Metabolic Pathways. ChemBioChem, 2008, 9, 25-28.	2.6	18

#	Article	IF	CITATIONS
181	FLAG-tag selective covalent protein labeling via a binding-induced acyl-transfer reaction. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6696-6699.	2.2	18
182	Construction of a 19F-lectin biosensor for glycoprotein imaging by using affinity-guided DMAP chemistry. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4393-4396.	2.2	18
183	Design of peptide-based bolaamphiphiles exhibiting heat-set hydrogelation via retro-Diels–Alder reaction. Journal of Materials Chemistry B, 2014, 2, 1464.	5.8	18
184	Ligand-Directed Chemistry of AMPA Receptors Confers Live-Cell Fluorescent Biosensors. ACS Chemical Biology, 2018, 13, 1880-1889.	3.4	18
185	Facilitated Photoreduction of Ruthenium Bis(4′-methylterpyridine) Pendant Myoglobin. Bulletin of the Chemical Society of Japan, 1996, 69, 1657-1661.	3.2	17
186	Incorporation of an Artificial Receptor into a Native Protein:Â New Strategy for the Design of Semisynthetic Enzymes with Allosteric Properties. Bioconjugate Chemistry, 1997, 8, 862-868.	3.6	17
187	Binuclear Ni ^{II} â€DpaTyr Complex as a High Affinity Probe for an Oligoâ€Aspartate Tag Tethered to Proteins. Chemistry - an Asian Journal, 2010, 5, 877-886.	3.3	17
188	New Supramolecular Approach for Saccharide-directed Chemical Modification of Concanavalin A. Chemistry Letters, 2003, 32, 632-633.	1.3	16
189	Artificial Receptors Designed for Intracellular Delivery of Anionic Phosphate Derivatives. ChemBioChem, 2008, 9, 698-701.	2.6	16
190	Mechanical Reinforcement of Supramolecular Hydrogel through Incorporation of Multiple Noncovalent Interactions. Chemistry Letters, 2011, 40, 198-200.	1.3	16
191	Design of a binuclear Ni(II)–iminodiacetic acid (IDA) complex for selective recognition and covalent labeling of His-tag fused proteins. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2855-2858.	2.2	16
192	Development of a Cell-Based Ligand-Screening System for Identifying Hsp90 Inhibitors. Biochemistry, 2020, 59, 179-182.	2.5	16
193	Incorporation of artificial receptors into a protein/peptide surface: A strategy for on/off type of switching of semisynthetic enzymes. Biopolymers, 2000, 55, 459-468.	2.4	15
194	Live cell off-target identification of lapatinib using ligand-directed tosyl chemistry. Chemical Communications, 2014, 50, 14097-14100.	4.1	15
195	Graftable SCoMPIs enable the labeling and X-ray fluorescence imaging of proteins. Chemical Science, 2018, 9, 4483-4487.	7.4	15
196	Molecular Recognition by Supramolecular Hosts Composed of an Adamantyl-appended Macrocycle with Cyclodextrins in Water. Chemistry Letters, 2003, 32, 288-289.	1.3	14
197	Preparation and unique circular dichroism phenomena of urea-functionalized self-folding resorcinarenes bearing chiral termini through asymmetric hydrogen-bonding belts. Organic and Biomolecular Chemistry, 2005, 3, 654.	2.8	14
198	Synthesis and guest-binding study of polytopic multi(cyclophane) hosts. Tetrahedron Letters, 2005, 46, 6589-6592.	1.4	13

#	Article	IF	Citations
199	Recent applications of <i>N</i> -acyl imidazole chemistry in chemical biology. Bioscience, Biotechnology and Biochemistry, 2021, 85, 53-60.	1.3	13
200	X-ray crystallographic studies of a Mn(II)-bridged biscalix[4] arene with a large inner cavity. Supramolecular Chemistry, 1994, 4, 223-228.	1.2	12
201	Extended Affinity-guided DMAP Chemistry with a Finely Tuned Acyl Donor for Intracellular FKBP12 Labeling. Chemistry Letters, 2015, 44, 333-335.	1.3	12
202	Site-specific covalent labeling of His-tag fused proteins with N-acyl-N-alkyl sulfonamide reagent. Bioorganic and Medicinal Chemistry, 2021, 30, 115947.	3.0	12
203	<i>In Situ</i> Real-time Confocal Imaging of a Self-assembling Peptide-grafted Polymer Showing pH-responsive Hydrogelation. Chemistry Letters, 2020, 49, 1319-1323.	1.3	12
204	First member of artificial flavolipid family, its synthesis and incorporation into artificial liposomes Tetrahedron Letters, 1986, 27, 5401-5404.	1.4	11
205	Control of electron transport by thermally induced phase transition of liposomal membrane. Tetrahedron Letters, 1987, 28, 5899-5902.	1.4	11
206	Self-sufficient Electron Injection from NADH to the Active Center of Flavin-Pendant Myoglobin. Chemistry Letters, 1994, 23, 1139-1142.	1.3	11
207	A Convenient Synthesis of a Ru(bpy)3-based Catenane-type Triad and Its Incorporation into a Protein Scaffold. Chemistry Letters, 1999, 28, 517-518.	1.3	11
208	Real-time fluorescence monitoring of GSK3β-catalyzed phosphoryation by use of a BODIPY-based Zn(II)–Dpa chemosensor. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4175-4177.	2.2	11
209	Design and semisynthesis of spermine-sensitive ribonuclease S'. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1215-1218.	2.2	10
210	Development of New Methods to Introduce Unnatural Functional Molecules into Native Proteins for Protein Engineering. Bulletin of the Chemical Society of Japan, 2007, 80, 1268-1279.	3.2	10
211	Screening of protein-ligand interactions under crude conditions by native mass spectrometry. Analytical and Bioanalytical Chemistry, 2020, 412, 4037-4043.	3.7	10
212	Mechanical Reinforcement of a Supramolecular Hydrogel Comprising an Artificial Glycoâ€Lipid through Supramolecular Copolymerization. Macromolecular Bioscience, 2008, 8, 1019-1025.	4.1	9
213	Thermoresponsive Fluorescent Sensor Based on Core/Shell Nanocomposite Composed of Gold Nanoparticles and Poly(<i>N</i> -isopropylacrylamide). Chemistry Letters, 2010, 39, 184-185.	1.3	9
214	Endogenous Membrane Receptor Labeling by Reactive Cytokines and Growth Factors to Chase Their Dynamics in Live Cells. CheM, 2018, 4, 1451-1464.	11.7	9
215	Development of a Nitric Oxide-Responsive Labeling Reagent for Proteome Analysis of Live Cells. ACS Chemical Biology, 2019, 14, 397-404.	3.4	9
216	Electron Microscopic Detection of Single Membrane Proteins by a Specific Chemical Labeling. IScience, 2019, 22, 256-268.	4.1	9

#	Article	IF	CITATIONS
217	Supramolecular Construction of Covalently and Noncovalently-linked Photoinduced Electron Transfer Systems in Myoglobin Scaffold. Electrochemistry, 2001, 69, 942-945.	1.4	9
218	The Synthesis of a Reconstituted C60-Modified Protein. Chemistry Letters, 2000, 29, 46-47.	1.3	8
219	Pd(en) as a Sequence-Selective Molecular Pinch for α-Helical Peptides. Chemistry Letters, 2001, 30, 16-17.	1.3	8
220	Real-time Off/On-mode Fluorescence Assay for Enzyme Reactions Involving Nucleoside Polyphosphates by Use of a Xanthene Znll–Dpa Chemosensor. Chemistry Letters, 2008, 37, 1164-1165.	1.3	8
221	Rapid and quantitative fluorescence detection of pathogenic spore-forming bacteria using a xanthene-Zn(II) complex chemosensor. Sensors and Actuators B: Chemical, 2015, 209, 606-612.	7.8	8
222	Liveâ€Cell Protein Sulfonylation Based on Proximityâ€driven N â€Sulfonyl Pyridone Chemistry. Angewandte Chemie, 2018, 130, 667-670.	2.0	8
223	Extracellular ATP Limits Homeostatic T Cell Migration Within Lymph Nodes. Frontiers in Immunology, 2021, 12, 786595.	4.8	8
224	Reconstitution of Myoglobin with a Heme Cofactor Bearing a Ruthenium Tris(2,2′-bipyridine) Pendant. Chemistry Letters, 1993, 22, 1417-1420.	1.3	7
225	Electron Transfer from Zn- Protoporphyrin IX to Ruthenium Ammine Attached at His63 of Reconstituted Cytochrome b562. Chemistry Letters, 1999, 28, 551-552.	1.3	7
226	Design of Coordination Interaction of Zn(II) Complex with Oligo-Aspartate Peptide to Afford a High-Affinity Tag–Probe Pair. Bulletin of the Chemical Society of Japan, 2015, 88, 784-791.	3.2	7
227	Chemogenetic Approach Using Ni(II) Complex–Agonist Conjugates Allows Selective Activation of Class A G-Protein-Coupled Receptors. ACS Central Science, 2018, 4, 1211-1221.	11.3	7
228	Optimized Reaction Pair of the CysHis Tag and Ni(II)-NTA Probe for Highly Selective Chemical Labeling of Membrane Proteins. Bulletin of the Chemical Society of Japan, 2019, 92, 995-1000.	3.2	7
229	Construction of ligand assay systems by protein-based semisynthetic biosensors. Current Opinion in Chemical Biology, 2019, 50, 10-18.	6.1	7
230	Masking Phosphate with Rare-Earth Elements Enables Selective Detection of Arsenate by Dipycolylamine-ZnII Chemosensor. Scientific Reports, 2020, 10, 2656.	3.3	7
231	Coordination chemogenetics for activation of GPCR-type glutamate receptors in brain tissue. Nature Communications, 2022, 13 , .	12.8	7
232	Single wall bilayer liposome functionalized with the artificialflavolipid (ii): its efficient electron flux conversion from nadh model of an appropriate structure in the transmembrane electron transfer. Tetrahedron Letters, 1987, 28, 3363-3366.	1.4	6
233	Sugar-facilitated Incorporation of a Heme Cofactor Bearing Phenylboronic Acid Groups into Apomyoglobin. Chemistry Letters, 1994, 23, 575-578.	1.3	6
234	Sugarâ€Induced Chiral Orientation of Boronicâ€Acidâ€Appended Amphiphile Clusters Formed in the Dipalmitoylphosphatidylcholine (DPPC) Membrane. Israel Journal of Chemistry, 1996, 36, 379-388.	2.3	6

#	Article	IF	CITATIONS
235	Pyrenylboronic Acid as a Novel Entry for Photochemical DNA Cleavage. Tetrahedron Letters, 1997, 38, 2479-2482.	1.4	6
236	Urea-functionalized Resorcinarenes: Preparation, Self-folding, and Their CD Phenomena Caused by Chiral Urea Termini through Intramolecular Hydrogen Bonding Interactions. Chemistry Letters, 2004, 33, 994-995.	1.3	6
237	A FRET Study of Guest Delivery to Concanavaline A by Supramolecular Hosts Composed of an Adamantyl-Appended Cyclophane and Saccharide-Branched Cyclodextrins. Chemistry Letters, 2004, 33, 548-549.	1.3	6
238	Simple and Practical Semi-wet Protein/Peptide Array Utilizing a Micelle-mixed Agarose Hydrogel. Chemistry Letters, 2005, 34, 294-295.	1.3	6
239	Synthesis of New Supramolecular Polymers Based on Glycosylated Amino Acid and Their Applications. Current Organic Chemistry, 2005, 9, 491-502.	1.6	6
240	Fluorescence imaging of ATP in neutrophils from patients with sepsis using organelle-localizable fluorescent chemosensors. Annals of Intensive Care, 2016, 6, 64.	4.6	6
241	Label-free Fluorescent Detection of Loop-mediated Isothermal Amplification of Nucleic Acid Using Pyrophosphate-selective Xanthene-based Zn(II)-coordination Chemosensor. Chemistry Letters, 2012, 41, 1666-1668.	1.3	5
242	Protein engineering through chemical, genetic and computational manipulation. Chemical Society Reviews, 2018, 47, 8977-8979.	38.1	5
243	On-cell coordination chemistry: Chemogenetic activation of membrane-bound glutamate receptors in living cells. Methods in Enzymology, 2019, 622, 411-430.	1.0	5
244	Biomembrane-embedded Catalysts for Membrane-associated Protein Labeling on Red Blood Cells. Chemistry Letters, 2015, 44, 1673-1675.	1.3	4
245	Organelleâ€Selective Labeling of Cholineâ€Containing Phospholipids (CPLs) and Realâ€Time Imaging in Living Cells. Current Protocols, 2021, 1, e105.	2.9	4
246	Labeling Proteins by Affinity-Guided DMAP Chemistry. Methods in Molecular Biology, 2015, 1266, 229-242.	0.9	4
247	Lipid Anchored Myoglobin 2. Effect of the Anchor Structure on Membrane Binding. Chemistry Letters, 1993, 22, 1175-1178.	1.3	3
248	Transition-metals facilitated electron transfer of semisynthetic myoglobin bearing bis(iminodiacetic) Tj ETQq0 0 (o rgBT /Ov	erlock 10 Tf :
249	Coupling Covalent and Noncovalent Electron Transfer in a Catenane-type Donor-Sensitizer-Acceptor Triad. Chemistry Letters, 2000, 29, 442-443.	1.3	3
250	Semisynthetic Hemoproteins Using Cofactor Engineering: Toward Supramolecular Protein-based Photosynthetic System. Supramolecular Chemistry, 2002, 14, 133-142.	1.2	3
251	Construction of Protein-Based Biosensors Using Ligand-Directed Chemistry for Detecting Analyte Binding. Methods in Enzymology, 2017, 589, 253-280.	1.0	3
252	Chemical biology tools for imaging-based analysis of organelle membranes and lipids. Current Opinion in Chemical Biology, 2022, 70, 102182.	6.1	3

#	Article	IF	Citations
253	Efficient Electron Flux Conversion from Strongly Hydrophilic NADH Model in the Transmembrane Electron Transfer by Flavolipid. Bulletin of the Chemical Society of Japan, 1988, 61, 3613-3618.	3.2	2
254	Immobilization of Myoglobin in a Multilayer Film of Two-Dimensional Polymer Network. Chemistry Letters, 1991, 20, 2227-2230.	1.3	2
255	Energy Transfer from Zinc-Myoglobin to a Cyanine Dye Facilitated by Their Simultaneous Binding to a Phosphate Bilayer Membrane. Chemistry Letters, 1993, 22, 1551-1554.	1.3	2
256	Novel Chemical Modification of Myoglobin by an Alcohol-Responsive Phenylboronic Acid Function. Chemistry Letters, 1994, 23, 1945-1948.	1.3	2
257	Globular Self-aggregates Formed with a Urea-functionalized Resorcinarene Derivative in Chloroform. Chemistry Letters, 2005, 34, 1276-1277.	1.3	2
258	Disassembly-driven Turn-on Sensing of Enzyme Activity by Substrate-based Fluorescent Nanoprobe. Chemistry Letters, 2013, 42, 1426-1428.	1.3	2
259	Fluorescence Differentiation of ATP-Related Multiple Enzymatic Activities in Synovial Fluid as a Marker of Calcium Pyrophosphate Deposition Disease Using Kyoto Green. Molecules, 2020, 25, 1116.	3.8	2
260	Ligand-Directed Tosyl Chemistry for Selective Native Protein Labeling In Vitro, In Cells, and In Vivo. Methods in Molecular Biology, 2015, 1266, 243-263.	0.9	2
261	Orthogonal Activation of Metabotropic Glutamate Receptor Using Coordination Chemogenetics. Frontiers in Chemistry, 2021, 9, 825669.	3.6	2
262	Peroxidase Activity of Cytochrome c Generated by Phenylboronic Acid Modification. Chemistry Letters, 1995, 24, 529-530.	1.3	1
263	Regulation of net activity of myoglobin bearing ruthenium tris(2,2′-bypyridine) by visible light. Journal of Inorganic Biochemistry, 1995, 59, 477.	3.5	1
264	Ligand-Directed N-Sulfonyl Pyridone Chemistry for Selective Native Protein Labeling and Imaging in Live Cell. Methods in Molecular Biology, 2019, 2008, 203-224.	0.9	1
265	Lectin Functionalization by Post-Photo Affinity Labeling Modification (P-PALM). Trends in Glycoscience and Glycotechnology, 2007, 19, 121-131.	0.1	1
266	Organic Chemistry for Creation and Regulation of Protein Functions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2006, 64, 141-150.	0.1	1
267	Recent progress of subcellular-compartment-focused chemical proteomics. , 2022, , 217-247.		1
268	Simultaneous Fixation of Orientation of Myoglobin and Metalloporphyrins by Synthetic Bilayer Membrane Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1992, 68, 47-50.	3.8	0
269	Supramolecular Semi-wet Protein Array-A New Method for the Immobilization of the Proteins Utilizing a Hydrogel. Kobunshi Ronbunshu, 2004, 61, 511-522.	0.2	O

2P-157 BIOMIMETIC FUNCTIONAL FIBROUS GEL CONSTRUCTED BY HIERARCHICAL SUPRAMOLECULAR ASSEMBLY OF ORGANIC MOLECULES (Cell biology, The 47th Annual Meeting of the Biophysical Society of) Tj ETQq0000 rgBT00 Overlock

16

270

#	Article	IF	Citations
271	What do we want to see and how?. Current Opinion in Chemical Biology, 2012, 16, 593-594.	6.1	O
272	Titelbild: Meter-Long and Robust Supramolecular Strands Encapsulated in Hydrogel Jackets (Angew.) Tj ETQq0 0 (0 r <u>g</u> BT	/Overlock 10 Tf
273	Ligand Directed Chemistry for Protein Labeling and Functionalization in Living Cells. Seibutsu Butsuri, 2013, 53, 202-205.	0.1	O
274	Semi-wet Protein/peptide Array Utilizing Supramolecular Hydrogel. Seibutsu Butsuri, 2006, 46, 287-291.	0.1	0
275	Recent Advance in Organic Chemistry for Protein Labeling under Live Cell Conditions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 521-531.	0.1	O