Katrina Cornish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3988752/publications.pdf Version: 2024-02-01

KATDINA CODNICH

#	Article	IF	CITATIONS
1	Novel Shielding Mortars for Radiation Source Transportation and Storage. Sustainability, 2022, 14, 1248.	1.6	10
2	Fly ash as a potential filler for the rubber industry. , 2022, , 763-792.		4
3	Rubber and latex extraction processes for Taraxacum kok-saghyz. Industrial Crops and Products, 2022, 178, 114562.	2.5	19
4	Guayule Natural Rubber Latex and Bi2O3 Films for X-ray Attenuating Medical Gloves. Materials, 2022, 15, 1184.	1.3	9
5	Alkaline pretreatment of Taraxacum kok-saghyz (TK) roots for the extraction of natural rubber (NR). Biochemical Engineering Journal, 2022, 181, 108376.	1.8	2
6	Polyamine flocculants and creaming agent enhance guayule latex processing. Industrial Crops and Products, 2022, 184, 115062.	2.5	0
7	Liquid Guayule Natural Rubber, a Sustainable Processing Aid, Enhances the Processability, Durability and Dynamic Mechanical Properties of Rubber Composites. Materials, 2022, 15, 3605.	1.3	1
8	Sustainable Epoxidized Guayule Natural Rubber, Blends and Composites with Improved Oil Resistance and Greater Stiffness. Materials, 2022, 15, 3946.	1.3	2
9	Future trends for the analysis of guayulins in guayule (Parthenium argentatum Gray) resins. Industrial Crops and Products, 2021, 159, 113027.	2.5	11
10	Commonalities and complexities in rubber biosynthesis. , 2021, , 23-50.		0
11	Adapting the Accelerated Solvent Extraction Method for Resin and Rubber Determination in Guayule Using the BÜCHI Speed Extractor. Molecules, 2021, 26, 183.	1.7	10
12	Natural rubber-producing sources, systems, and perspectives for breeding and biotechnology studies of Taraxacum kok-saghyz. Industrial Crops and Products, 2021, 170, 113667.	2.5	32
13	Physicochemical properties and rheological behavior of chrysanthemum powder made by superfine grinding and high pressure homogenization. Journal of Food Process Engineering, 2021, 44, e13652.	1.5	3
14	Waste Conversion Into Sustainable and Reinforcing Fillers for Rubber Composites. , 2020, , 648-657.		1
15	Liquid guayule natural rubber, a renewable and crosslinkable processing aid in natural and synthetic rubber compounds. Journal of Cleaner Production, 2020, 276, 122933.	4.6	18
16	Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environmental Science & Technology, 2020, 54, 4712-4732.	4.6	207
17	Inactivation of the Levansucrase Gene in Paenibacillus polymyxa DSM 365 Diminishes Exopolysaccharide Biosynthesis during 2,3-Butanediol Fermentation. Applied and Environmental Microbiology, 2020, 86, .	1.4	18
18	New Developments in Rubber Particle Biogenesis of Rubber-Producing Species. Compendium of Plant Genomes, 2020, , 153-168.	0.3	1

#	Article	IF	CITATIONS
19	Perspectives and Ongoing Challenges. Compendium of Plant Genomes, 2020, , 169-175.	0.3	1
20	REINFORCED MECHANICAL PROPERTIES OF FUNCTIONALIZED SILICA AND EGGSHELL FILLED GUAYULE NATURAL RUBBER COMPOSITES. Rubber Chemistry and Technology, 2019, 92, 687-708.	0.6	9
21	Eggshell improves dynamic properties of durable guayule rubber composites co-reinforced with silanized silica. Industrial Crops and Products, 2019, 138, 111440.	2.5	13
22	Optimal mechanical properties of biodegradable natural rubber-toughened PHBV bioplastics intended for food packaging applications. Food Packaging and Shelf Life, 2019, 21, 100348.	3.3	32
23	Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnology Journal, 2019, 17, 2041-2061.	4.1	106
24	INFLUENCE OF STRAIN-INDUCED CRYSTALLIZATION ON STRESS SOFTENING OF SULFUR CROSS-LINKED UNFILLED GUAYULE AND DANDELION NATURAL RUBBERS. Rubber Chemistry and Technology, 2019, 92, 388-398.	0.6	4
25	Bioâ€based blends from poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) and natural rubber for packaging applications. Journal of Applied Polymer Science, 2019, 136, 47334.	1.3	22
26	Development of novel processes for the aqueous extraction of natural rubber from <i>Taraxacum kokâ€saghyz</i> (TK). Journal of Chemical Technology and Biotechnology, 2019, 94, 2452-2464.	1.6	17
27	Synergistic Mechanisms Underlie the Peroxide and Coagent Improvement of Natural-Rubber-Toughened Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Mechanical Performance. Polymers, 2019, 11, 565.	2.0	23
28	Characterization of Agricultural and Food Processing Residues for Potential Rubber Filler Applications. Journal of Composites Science, 2019, 3, 102.	1.4	13
29	Potential Applications of Guayulins to Improve Feasibility of Guayule Cultivation. Agronomy, 2019, 9, 804.	1.3	24
30	Planting Density and Growth Cycle Affect Actual and Potential Latex and Rubber Yields in Taraxacum kok-saghyz. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 1338-1344.	0.5	8
31	Lignocellulose-Degrading Thermophilic Fungi and Their Prospects in Natural Rubber Extraction from Plants. , 2019, , 465-478.		0
32	Hybridization potential between the rubber dandelion Taraxacum kokâ€saghyz and common dandelion Taraxacum officinale. Ecosphere, 2018, 9, e02115.	1.0	7
33	Phosphorylated cardanol prepolymer grafted guayule natural rubber: an advantageous green natural rubber. Iranian Polymer Journal (English Edition), 2018, 27, 307-318.	1.3	8
34	Colchicine-induced polyploidy has the potential to improve rubber yield in Taraxacum kok-saghyz. Industrial Crops and Products, 2018, 112, 75-81.	2.5	39
35	QUANTIFICATION OF THE CONTRIBUTION OF FILLER CHARACTERISTICS TO NATURAL RUBBER REINFORCEMENT USING PRINCIPAL COMPONENT ANALYSIS. Rubber Chemistry and Technology, 2018, 91, 79-96.	0.6	12
36	Rapid and complete removal of guayule (Parthenium argentatum) leaves by cryodefoliation, and freeze and thaw induction of rubber particle coagulation. Industrial Crops and Products, 2018, 125, 491-495.	2.5	6

#	Article	IF	CITATIONS
37	Unusual subunits are directly involved in binding substrates for natural rubber biosynthesis in multiple plant species. Phytochemistry, 2018, 156, 55-72.	1.4	18
38	Simultaneous quantification of rubber, inulin, and resins in Taraxacum kok-saghyz (TK) roots by sequential solvent extraction. Industrial Crops and Products, 2018, 122, 647-656.	2.5	22
39	Variance, Inter-Trait Correlation, Heritability, and Marker-Trait Association of Rubber Yield-Related Characteristics in Taraxacum kok-saghyz. Plant Molecular Biology Reporter, 2018, 36, 576-587.	1.0	6
40	Thermomyces lanuginosus STm: A source of thermostable hydrolytic enzymes for novel application in extraction of high-quality natural rubber from Taraxacum kok-saghyz (Rubber dandelion). Industrial Crops and Products, 2017, 103, 161-168.	2.5	20
41	Taraxacum kok-saghyz (TK): compositional analysis of a feedstock for natural rubber and other bioproducts. Industrial Crops and Products, 2017, 107, 624-640.	2.5	60
42	Improved axenic hydroponic whole plant propagation for rapid production of roots as transformation target tissue. Plant Methods, 2017, 13, 37.	1.9	5
43	Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives. BMC Plant Biology, 2017, 17, 34.	1.6	61
44	Genome size variation among common dandelion accessions informs their mode of reproduction and suggests the absence of sexual diploids in North America. Plant Systematics and Evolution, 2017, 303, 719-725.	0.3	12
45	Alternative Natural Rubber Crops: Why Should We Care?. Technology and Innovation, 2017, 18, 244-255.	0.2	80
46	Processing and mechanical properties of natural rubber/waste-derived nano filler composites compared to macro and micro filler composites. Industrial Crops and Products, 2017, 107, 217-231.	2.5	54
47	Analysis of the first Taraxacum kok-saghyz transcriptome reveals potential rubber yield related SNPs. Scientific Reports, 2017, 7, 9939.	1.6	50
48	Characteristics of mechanical properties of sulphur cross-linked guayule and dandelion natural rubbers. RSC Advances, 2017, 7, 50739-50752.	1.7	32
49	Effect of naturally occurring crosslinking junctions on green strength of natural rubber. Polymers for Advanced Technologies, 2017, 28, 303-311.	1.6	19
50	Laticifer and Rubber Particle Ontogeny in Taraxacum kok-saghyz (Rubber Dandelion) Roots. Microscopy and Microanalysis, 2016, 22, 1034-1035.	0.2	6
51	Mechanical and Rheological Properties of PHBV Bioplastic Composites Engineered with Invasive Plant Fibers. Transactions of the ASABE, 2016, 59, 1883-1891.	1.1	2
52	Thermal and Morphological Analysis of Novel Composites Made with Fibers from Invasive Wetland Plants and Poly-(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Transactions of the ASABE, 2016, 59, 1451-1458.	1.1	1
53	Fabrication and improved performance of poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate) for packaging by addition of high molecular weight natural rubber. Journal of Applied Polymer Science, 2016, 133, .	1.3	20
54	High performance waste-derived filler/carbon black reinforced guayule natural rubber composites. Industrial Crops and Products, 2016, 86, 132-142.	2.5	70

#	Article	IF	CITATIONS
55	Strain-induced crystallization behaviour of natural rubbers from guayule and rubber dandelion revealed by simultaneous time-resolved WAXD/tensile measurements: indispensable function for sustainable resources. RSC Advances, 2016, 6, 95601-95610.	1.7	36
56	Compartmentalized Metabolic Engineering for Artemisinin Biosynthesis and Effective Malaria Treatment by Oral Delivery of Plant Cells. Molecular Plant, 2016, 9, 1464-1477.	3.9	83
57	CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection. Industrial Crops and Products, 2016, 89, 356-362.	2.5	76
58	Acetone-butanol-ethanol fermentation of corn stover: current production methods, economic viability and commercial use. FEMS Microbiology Letters, 2016, 363, fnw033.	0.7	31
59	Temporal diversity of Taraxacum kok-saghyz plants reveals high rubber yield phenotypes. Biodiversitas, 2016, 17, .	0.2	27
60	Effect of Non-Rubber Constituents on Guayule and Hevea Rubber Intrinsic Properties. Journal of Research Updates in Polymer Science, 2016, 5, 87-96.	0.3	19
61	Protein influences on guayule and <scp>H</scp> evea natural rubber sol and gel. Journal of Applied Polymer Science, 2015, 132, .	1.3	24
62	Immunological Analysis of the Alternate Rubber Crop Taraxacum koksaghyz Indicates Multiple Proteins Cross-Reactive with Hevea brasiliensis Latex Allergens. Journal of Biotechnology & Biomaterials, 2015, 05, .	0.3	24
63	Rapid and hormone-free Agrobacterium rhizogenes-mediated transformation in rubber producing dandelions Taraxacum kok-saghyz and T. brevicorniculatum. Industrial Crops and Products, 2015, 66, 110-118.	2.5	19
64	Novel Mineral and Organic Materials from Agro-Industrial Residues as Fillers for Natural Rubber. Journal of Polymers and the Environment, 2015, 23, 437-448.	2.4	38
65	Butanol production from inulin-rich chicory and Taraxacum kok-saghyz extracts: Determination of sugar utilization profile of Clostridium saccharobutylicum P262. Industrial Crops and Products, 2015, 76, 739-748.	2.5	15
66	UNRAVELING THE MYSTERY OF NATURAL RUBBER BIOSYNTHESIS. PART II: COMPOSITION AND GROWTH OF IN VITRO NATURAL RUBBER USING HIGH-RESOLUTION SIZE EXCLUSION CHROMATOGRAPHY. Rubber Chemistry and Technology, 2014, 87, 451-458.	0.6	4
67	Feasibility of producing butanol from industrial starchy food wastes. Applied Energy, 2014, 136, 590-598.	5.1	76
68	Highly efficient callus-mediated genetic transformation of Parthenium argentatum Gray, an alternate source of latex and rubber. Industrial Crops and Products, 2014, 62, 212-218.	2.5	0
69	Evaluation of industrial dairy waste (milk dust powder) for acetone-butanol-ethanol production by solventogenic Clostridium species. SpringerPlus, 2014, 3, 387.	1.2	23
70	Photosynthetic response of in vitro guayule plants in low and high lights and the role of non-photochemical quenching in plant acclimation. Industrial Crops and Products, 2014, 54, 266-271.	2.5	10
71	Accurate quantification of guayule resin and rubber requires sample drying below a critical temperature threshold. Industrial Crops and Products, 2013, 41, 158-164.	2.5	26
72	How pressure and filter material affect extraction of sunflower latex rubber. Industrial Crops and Products, 2013, 47, 102-105.	2.5	2

#	Article	IF	CITATIONS
73	Extraction of natural rubber and resin from guayule using an accelerated solvent extractor. Industrial Crops and Products, 2013, 43, 506-510.	2.5	36
74	Overexpression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Parthenium argentatum (guayule). Industrial Crops and Products, 2013, 46, 15-24.	2.5	43
75	Natural Rubber Biosynthesis in Plants. Methods in Enzymology, 2012, 515, 63-82.	0.4	28
76	Altered levels of the Taraxacum kok-saghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism. Phytochemistry, 2012, 79, 46-56.	1.4	68
77	Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metabolic Engineering, 2012, 14, 19-28.	3.6	120
78	MEET THE EDITORS: Views on industrial biotechnology. Industrial Biotechnology, 2011, 7, 17-19.	0.5	0
79	Immunogenicity studies of guayule and guayule latex in occupationally exposed workers. Industrial Crops and Products, 2010, 31, 197-201.	2.5	23
80	Natural rubber quantification in sunflower using an automated solvent extractor. Industrial Crops and Products, 2010, 31, 469-475.	2.5	18
81	Agronomic and natural rubber characteristics of sunflower as a rubber-producing plant. Industrial Crops and Products, 2010, 31, 481-491.	2.5	10
82	Guayule (Parthenium argentatum) pyrolysis and analysis by PY–GC/MS. Journal of Analytical and Applied Pyrolysis, 2010, 87, 14-23.	2.6	24
83	ORIGINAL RESEARCH: Evaluation & control of potential sensitizing & irritating chemical components in natural rubber latex extracted from the industrial crop guayule. Industrial Biotechnology, 2009, 5, 245-252.	0.5	12
84	Comparative analysis of the complete sequence of the plastid genome of Parthenium argentatum and identification of DNA barcodes to differentiate Parthenium species and lines. BMC Plant Biology, 2009, 9, 131.	1.6	74
85	Plant population, planting date, and germplasm effects on guayule latex, rubber, and resin yields. Industrial Crops and Products, 2009, 29, 255-260.	2.5	20
86	Post-harvest storage effects on guayule latex, rubber, and resin contents and yields. Industrial Crops and Products, 2009, 29, 326-335.	2.5	22
87	Improved methods for extraction and quantification of resin and rubber from guayule. Industrial Crops and Products, 2009, 30, 9-16.	2.5	34
88	Energy-dense liquid fuel intermediates by pyrolysis of guayule (Parthenium argentatum) shrub and bagasse. Fuel, 2009, 88, 2207-2215.	3.4	52
89	A versatile photoactivatable probe designed to label the diphosphate binding site of farnesyl diphosphate utilizing enzymes. Bioorganic and Medicinal Chemistry, 2009, 17, 4797-4805.	1.4	12
90	Initiation of rubber biosynthesis: In vitro comparisons of benzophenone-modified diphosphate analogues in three rubber-producing species. Phytochemistry, 2008, 69, 2539-2545.	1.4	26

#	Article	lF	CITATIONS
91	Production and Properties of Yulex \hat{A}^{\otimes} - The Natural Solution to Latex Allergy. Rubber Chemistry and Technology, 2008, 81, 709-722.	0.6	11
92	The potential for sunflower as a rubber-producing crop for the United States. Helia, 2007, 30, 157-166.	0.0	1
93	A Photoactive Isoprenoid Diphosphate Analogue Containing a Stable Phosphonate Linkage:Â Synthesis and Biochemical Studies with Prenyltransferases. Journal of Organic Chemistry, 2007, 72, 4587-4595.	1.7	30
94	Manipulation of intracellular magnesium levels in Saccharomyces cerevisiae with deletion of magnesium transporters. Applied Microbiology and Biotechnology, 2007, 77, 411-425.	1.7	12
95	Initiator-independent and initiator-dependent rubber biosynthesis in Ficus elastica. Archives of Biochemistry and Biophysics, 2006, 448, 13-22.	1.4	17
96	Magnesium ion regulation of in vitro rubber biosynthesis by Parthenium argentatum Gray. Phytochemistry, 2006, 67, 1621-1628.	1.4	16
97	Low light and low ammonium are key factors for guayule leaf tissue shoot organogenesis and transformation. Plant Cell Reports, 2006, 25, 26-34.	2.8	20
98	Identification and comparison of natural rubber from two Lactuca species. Phytochemistry, 2006, 67, 2590-2596.	1.4	59
99	Post-harvest storage effects on guayule latex quality from agronomic trials. Industrial Crops and Products, 2006, 24, 321-328.	2.5	12
100	Biochemical regulation of rubber biosynthesis in guayule (Parthenium argentatum Gray). Industrial Crops and Products, 2005, 22, 49-58.	2.5	16
101	Growth, rubber, and resin evaluation of two-year-old transgenic guayule. Industrial Crops and Products, 2005, 22, 65-74.	2.5	38
102	Latex yield and quality during storage of guayule (Parthenium argentatum Gray) homogenates. Industrial Crops and Products, 2005, 22, 75-85.	2.5	9
103	Regulation of Rubber Biosynthetic Rate and Molecular Weight inHeveabrasiliensisby Metal Cofactor. Biomacromolecules, 2005, 6, 279-289.	2.6	30
104	Latex quantification in homogenate and purified latex samples from various plant species using near infrared reflectance spectroscopy. Industrial Crops and Products, 2004, 19, 283-296.	2.5	21
105	Induction of rubber transferase activity in guayule (Parthenium argentatum Gray) by low temperatures. Industrial Crops and Products, 2003, 17, 83-92.	2.5	35
106	Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates. Phytochemistry, 2003, 64, 123-134.	1.4	35
107	Protein farnesyltransferase inhibitors interfere with farnesyl diphosphate binding by rubber transferase. FEBS Journal, 2003, 270, 3939-3945.	0.2	12
108	Title is missing!. Journal of Polymers and the Environment, 2002, 10, 13-18.	2.4	8

#	Article	IF	CITATIONS
109	Title is missing!. Journal of Polymers and the Environment, 2002, 10, 155-162.	2.4	12
110	Biochemistry of natural rubber, a vital raw material, emphasizing biosynthetic rate, molecular weight and compartmentalization, in evolutionarily divergent plant species (1963 to 2000). Natural Product Reports, 2001, 18, 182-189.	5.2	95
111	Similarities and differences in rubber biochemistry among plant species. Phytochemistry, 2001, 57, 1123-1134.	1.4	208
112	Multiwell filtration system results in rapid, high-throughput rubber transferase microassay. Phytochemical Analysis, 2000, 11, 356-361.	1.2	13
113	Post-harvest stability of latex in different sizes of guayule branches. Industrial Crops and Products, 2000, 12, 25-32.	2.5	15
114	A simplified protocol for micropropagation of guayule (Parthenium argentatum gray). In Vitro Cellular and Developmental Biology - Plant, 2000, 36, 215-219.	0.9	8
115	Alternative sources of natural rubber. Applied Microbiology and Biotechnology, 2000, 53, 355-365.	1.7	299
116	Microstructure of Purified Rubber Particles. International Journal of Plant Sciences, 2000, 161, 435-445.	0.6	70
117	Rubber Molecular Weight Regulation, in Vitro, in Plant Species that Produce High and Low Molecular Weights in Vivo. Biomacromolecules, 2000, 1, 632-641.	2.6	45
118	Regulation of initiation and polymer molecular weightof cis-1,4-polyisoprene synthesized in vitro by particlesisolated from Parthenium argentatum (Gray). Phytochemistry, 1999, 51, 43-51.	1.4	35
119	Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. Planta, 1999, 210, 85-96.	1.6	120
120	Latex quantification in guayule shrub and homogenate. Industrial Crops and Products, 1999, 10, 121-136.	2.5	40
121	Viral impermeability of hypoallergenic, low protein, guayule latex films. , 1999, 47, 434-437.		21
122	Stabilisation of Particle Integrity and Particle Boundcis-Prenyl Transferase Activity in Stored, Purified Rubber Particles. Phytochemical Analysis, 1997, 8, 130-134.	1.2	16
123	Absence of cross-reactivity of IgE antibodies from subjects allergic to Hevea brasiliensis latex with a new source of natural rubber latex from guayule (Parthenium argentatum). Journal of Allergy and Clinical Immunology, 1996, 98, 895-902.	1.5	86
124	Advances in Alternative Natural Rubber Production. ACS Symposium Series, 1996, , 141-156.	0.5	1
125	A Guinea Pig Model of Hypersensitivity to Allergenic Fractions of Natural Rubber Latex. International Archives of Allergy and Immunology, 1996, 110, 187-194.	0.9	15
126	Shared IgE-Binding Sites among Separated Components of Natural Rubber Latex. International Archives of Allergy and Immunology, 1996, 111, 48-54.	0.9	8

#	Article	IF	CITATIONS
127	Characterization and Performance Testing of Guayule Latex. Rubber Chemistry and Technology, 1996, 69, 215-222.	0.6	28
128	Measurement of Protein in Natural Rubber Latex. Analytical Biochemistry, 1995, 229, 278-281.	1.1	31
129	The Major Protein of Guayule Rubber Particles Is a Cytochrome P450. Journal of Biological Chemistry, 1995, 270, 8487-8494.	1.6	132
130	Effect of Different Allylic Diphosphates on the Initiation of New Rubber Molecules and on Cis-1,4-polyisoprene Biosynthesis in Guayule (Parthenium argentatum Gray). Journal of Plant Physiology, 1995, 147, 301-305.	1.6	39
131	Immunoinhibition of rubber particle-bound cis-prenyl transferases in ficus elastica and parthenium argentatum. Phytochemistry, 1994, 35, 1425-1428.	1.4	17
132	Identification of Parthenium argentatum rubber particle proteins immunoprecipitated by an antibody that specifically inhibits rubber transferase activity. Phytochemistry, 1994, 36, 623-627.	1.4	18
133	Hypoallergenicity of guayule rubber particle proteins compared to Hevea latex proteins. Industrial Crops and Products, 1994, 2, 307-313.	2.5	79
134	A protein from Ficus elastica rubber particles is related to proteins from Hevea brasiliensis and Parthenium argentatum. Phytochemistry, 1993, 32, 1097-1102.	1.4	51
135	The separate roles of plant cis and trans prenyl transferases in cis-1,4-polyisoprene biosynthesis. FEBS Journal, 1993, 218, 267-271.	0.2	91
136	Natural Rubber Biosynthesis. ACS Symposium Series, 1992, , 18-26.	0.5	5
137	Molecular Cloning of a Portion of the Gene for the Abundant Rubber Particle Protein of Guayule. , 1992, , 361-366.		0
138	Purification and characterization of an abundant rubber particle protein from guayule. Phytochemistry, 1991, 30, 2493-2497.	1.4	30
139	Enhanced Photosynthesis and Stomatal Conductance of Pima Cotton (<i>Gossypium barbadense</i> L.) Bred for Increased Yield. Plant Physiology, 1991, 97, 484-489.	2.3	103
140	Rubber transferase activity in rubber particles of guayule. Phytochemistry, 1990, 29, 3809-3813.	1.4	109
141	From Metabolism to Organism: An Integrative View of Water Stress Emphasizing Abscisic Acid. , 1990, , 89-112.		11
142	Phenotypic Expression of Wild-Type Tomato and Three Wilty Mutants in Relation to Abscisic Acid Accumulation in Roots and Leaflets of Reciprocal Grafts. Plant Physiology, 1988, 87, 190-194.	2.3	38
143	Abscisic Acid Accumulation by <i>in Situ</i> and Isolated Guard Cells of <i>Pisum sativum</i> L. and <i>Vicia faba</i> L. in Relation to Water Stress. Plant Physiology, 1986, 81, 1017-1021.	2.3	58
144	Movement of Abscisic Acid into the Apoplast in Response to Water Stress in <i>Xanthium strumarium</i> L. Plant Physiology, 1985, 78, 623-626.	2.3	67

#	Article	IF	CITATIONS
145	Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress. Plant Physiology, 1985, 79, 653-658.	2.3	126
146	Abscisic Acid Metabolism in Relation to Water Stress and Leaf Age in <i>Xanthium strumarium</i> . Plant Physiology, 1984, 76, 1029-1035.	2.3	96