Marco P L Parente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3988462/publications.pdf

Version: 2024-02-01

145 papers 1,658 citations

377584 21 h-index 32 g-index

158 all docs

158 docs citations

158 times ranked 1093 citing authors

#	Article	IF	CITATIONS
1	Numerical study of flexible tubular metal-polymer adhesive joints. Journal of Adhesion, 2022, 98, 131-153.	1.8	7
2	Identification of Ulcers and Erosions by the Novel <i>Pillcamâ,,¢</i> Crohn's Capsule Using a Convolutional Neural Network: A Multicentre Pilot Study. Journal of Crohn's and Colitis, 2022, 16, 169-172.	0.6	28
3	Artificial intelligence for automatic diagnosis of biliary stricture malignancy status in single-operator cholangioscopy: a pilot study. Gastrointestinal Endoscopy, 2022, 95, 339-348.	0.5	29
4	Artificial Intelligence and Capsule Endoscopy: Automatic Detection of Small Bowel Blood Content Using a Convolutional Neural Network. GE Portuguese Journal of Gastroenterology, 2022, 29, 331-338.	0.3	10
5	On the hearing effects of a cholesteatoma growing: A biomechanical study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, 236, 72-83.	1.0	0
6	A finite element model to predict the consequences of endolymphatic hydrops in the basilar membrane. International Journal for Numerical Methods in Biomedical Engineering, 2022, 38, e3541.	1.0	2
7	Pelvic floor muscle injury during a difficult labor. Can tissue fatigue damage play a role?. International Urogynecology Journal, 2022, 33, 211-220.	0.7	4
8	Automated detection of ulcers and erosions in capsule endoscopy images using a convolutional neural network. Medical and Biological Engineering and Computing, 2022, 60, 719-725.	1.6	14
9	On the management of maternal pushing during the second stage of labor: a biomechanical study considering passive tissue fatigue damage accumulation. American Journal of Obstetrics and Gynecology, 2022, 227, 267.e1-267.e20.	0.7	4
10	Simulation of vaginal uterosacral ligament suspension damage, mimicking a mesh-augmented apical prolapse repair. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, 236, 573-582.	1.0	5
11	Biomechanical characterization of the small intestine to simulate gastrointestinal tract chyme propulsion. International Journal for Numerical Methods in Biomedical Engineering, 2022, 38, e3588.	1.0	3
12	Bone: An Outstanding Composite Material. Applied Sciences (Switzerland), 2022, 12, 3381.	1.3	14
13	Finite Element Analysis of the Epiretinal Membrane Contraction. Applied Sciences (Switzerland), 2022, 12, 2623.	1.3	O
14	A biomechanical study of the birth position: a natural struggle between mother and fetus. Biomechanics and Modeling in Mechanobiology, 2022, 21, 937-951.	1.4	1
15	<i>i ì μ</i> SmartScope – Towards a low-cost microscopic medical device for cervical cancer screening using additive manufacturing and optimization. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236, 267-279.	0.7	1
16	Modeling Permanent Deformation during Low-Cycle Fatigue: Application to the Pelvic Floor Muscles during Labor. Journal of the Mechanics and Physics of Solids, 2022, , 104908.	2.3	0
17	A numerical study on fetal head molding during labor. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3411.	1.0	8
18	Artificial intelligence and capsule endoscopy: automatic detection of vascular lesions using a convolutional neural network. Annals of Gastroenterology, 2021, 34, 820-828.	0.4	6

#	Article	IF	CITATIONS
19	Stress–strain evaluation of structural parts using artificial neural networks. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 1271-1286.	0.7	2
20	Influence of the basilar membrane shape and mechanical properties in the cochlear response: A numerical study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2021, 235, 743-750.	1.0	2
21	Effect of the birthing position on its evolution from a biomechanical point of view. Computer Methods and Programs in Biomedicine, 2021, 200, 105921.	2.6	10
22	DOP80 Automatic detection of ulcers and erosions in PillCamâ,,¢ Crohn's capsule using a convolutional neural network. Journal of Crohn's and Colitis, 2021, 15, S111-S112.	0.6	1
23	Development of a Convolutional Neural Network for Detection of Erosions and Ulcers With Distinct Bleeding Potential in Capsule Endoscopy. Techniques and Innovations in Gastrointestinal Endoscopy, 2021, 23, 291-296.	0.4	4
24	Mechanical Effects of a Maylard Scar During a Vaginal Birth After a Previous Caesarean. Annals of Biomedical Engineering, 2021, 49, 3593-3608.	1.3	4
25	Evaluation through a finite element simulation of the performance of FRP anchors for externally bonded reinforcements. Composite Structures, 2021, 267, 113919.	3.1	8
26	Artificial intelligence and colon capsule endoscopy: automatic detection of blood in colon capsule endoscopy using a convolutional neural network. Endoscopy International Open, 2021, 09, E1264-E1268.	0.9	9
27	Injuries in Muscle-Tendon-Bone Units: A Systematic Review Considering the Role of Passive Tissue Fatigue. Orthopaedic Journal of Sports Medicine, 2021, 9, 232596712110207.	0.8	14
28	Artificial intelligence and colon capsule endoscopy: development of an automated diagnostic system of protruding lesions in colon capsule endoscopy. Techniques in Coloproctology, 2021, 25, 1243-1248.	0.8	12
29	Deep learning and capsule endoscopy: automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network. BMJ Open Gastroenterology, 2021, 8, e000753.	1.1	24
30	Effect of mesh anchoring technique in uterine prolapse repair surgery: A finite element analysis. Journal of Biomechanics, 2021, 127, 110649.	0.9	8
31	Artificial intelligence and capsule endoscopy: automatic detection of enteric protruding lesions using a convolutional neural network. Revista Espanola De Enfermedades Digestivas, 2021, , .	0.1	3
32	Finite element modelling of the surgical procedure for placement of a straight electrode array: Mechanical and clinical consequences. Journal of Biomechanics, 2021, 129, 110812.	0.9	4
33	Automatic Identification of Papillary Projections in Indeterminate Biliary Strictures Using Digital Single-Operator Cholangioscopy. Clinical and Translational Gastroenterology, 2021, 12, e00418.	1.3	6
34	Techniques for the Mechanical Characterization and Numerical Modelling of Bonded Automotive Structures Under Impact Loads. Lecture Notes in Mechanical Engineering, 2021, , 79-106.	0.3	0
35	Predicting the mechanical response of the vaginal wall in ball burst tests based on histology. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1925-1933.	1.6	5
36	Investigating the birth-related caudal maternal pelvic floor muscle injury: The consequences of low cycle fatigue damage. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103956.	1.5	6

#	Article	IF	CITATIONS
37	The neurophysiological activations of mechanical engineers and industrial designers while designing and problem-solving. Design Science, 2020, 6, .	1.1	24
38	Numerical simulation of lateral and transforaminal lumbar interbody fusion, two minimally invasive surgical approaches. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 408-421.	0.9	10
39	Minimally invasive transforaminal and anterior lumbar interbody fusion surgery at level L5-S1. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 384-395.	0.9	4
40	On the mechanical response of the actomyosin cortex during cell indentations. Biomechanics and Modeling in Mechanobiology, 2020, 19, 2061-2079.	1.4	1
41	Altered mechanics of vaginal smooth muscle cells due to the lysyl oxidase-like1 knockout. Acta Biomaterialia, 2020, 110, 175-187.	4.1	8
42	Biomechanical Simulation of Vaginal Childbirth: The Colors of the Pelvic Floor Muscles. , 2020, , 1-17.		1
43	Biomechanics of the Vestibular System: A Numerical Simulation. , 2019, , 21-32.		1
44	Simulation of the uterine contractions and foetus expulsion using a chemo-mechanical constitutive model. Biomechanics and Modeling in Mechanobiology, 2019, 18, 829-843.	1.4	9
45	The effect of consecutive pregnancies on the ovine pelvic soft tissues: Link between biomechanical and histological components. Annals of Anatomy, 2019, 222, 166-172.	1.0	9
46	Characterizing the Biomechanical Properties of the Pubovisceralis Muscle Using a Genetic Algorithm and the Finite Element Method. Journal of Biomechanical Engineering, 2019, 141, .	0.6	10
47	Linking hyperelastic theoretical models and experimental data of vaginal tissue through histological data. Journal of Biomechanics, 2019, 82, 271-279.	0.9	11
48	Understanding the Design Neurocognition of Mechanical Engineers When Designing and Problem-Solving. , 2019, , .		8
49	Trigeminal nerve – interdisciplinarity between the areas of dentistry and audiology. , 2019, , 101-104.		0
50	Characterization of the passive and active material parameters of the pubovisceralis muscle using an inverse numerical method. Journal of Biomechanics, 2018, 71, 100-110.	0.9	13
51	Biomechanical Analysis of the Damage in the Pelvic Floor Muscles During Childbirth. Lecture Notes in Computational Vision and Biomechanics, 2018, , 133-142.	0.5	1
52	Searching for the Tissue Mechanical Properties in Pelvic Floor Dysfunction by Computational Modeling. Lecture Notes in Computational Vision and Biomechanics, 2018, , 203-215.	0.5	0
53	The free vibrations analysis of the cupula in the inner ear using a natural neighbor meshless method. Engineering Analysis With Boundary Elements, 2018, 92, 50-63.	2.0	7
54	Continuum mechanical model for cross-linked actin networks with contractile bundles. Journal of the Mechanics and Physics of Solids, 2018, 110, 100-117.	2.3	10

#	Article	IF	Citations
55	The analysis of composite laminated beams using a 2D interpolating meshless technique. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 99-116.	1.5	4
56	Viscous effects in pelvic floor muscles during childbirth: A numerical study. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2927.	1.0	18
57	A simple and unified implementation of phase field and gradient damage models. Advanced Modeling and Simulation in Engineering Sciences, 2018, 5, .	0.7	28
58	A computational framework to simulate the endolymph flow due to vestibular rehabilitation maneuvers assessed from accelerometer data. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21, 461-469.	0.9	5
59	On the effect of labour durations using an anisotropic visco-hyperelastic-damage approach to simulate vaginal deliveries. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 120-126.	1.5	12
60	A methodology for a global-local fatigue analysis of ancient riveted metallic bridges. International Journal of Structural Integrity, 2018, 9, 355-380.	1.8	10
61	Aluminum foam sandwich with adhesive bonding: Computational modeling. Journal of Adhesion, 2017, 93, 1025-1047.	1.8	2
62	Pubovisceralis Muscle Fiber Architecture Determination: Comparison Between Biomechanical Modeling and Diffusion Tensor Imaging. Annals of Biomedical Engineering, 2017, 45, 1255-1265.	1.3	11
63	A general framework for the numerical implementation of anisotropic hyperelastic material models including non-local damage. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1119-1140.	1.4	13
64	On the Stiffness of the Mesh and Urethral Mobility: A Finite Element Analysis. Journal of Biomechanical Engineering, 2017, 139, .	0.6	10
65	A holistic view of the effects of episiotomy on pelvic floor. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2892.	1.0	5
66	The human otitis media with effusion: a numerical-based study. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 958-966.	0.9	12
67	A Numerical Study of Fenestral Otosclerosis. Advanced Structured Materials, 2017, , 147-155.	0.3	0
68	A numerical study of the human ear. , 2017, , .		2
69	The free vibration computational analysis of the cupula in the inner ear. , 2017, , .		0
70	Characterization of the biomechanical properties of the pubovisceralis muscle of two women $\hat{a}\in$ " One with pelvic organ prolapse and other without pathology., 2017,,.		0
71	Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 842-852.	0.9	24
72	THE INFLUENCE OF PELVIC ORGAN PROLAPSE ON THE PASSIVE BIOMECHANICAL PROPERTIES OF PELVIC FLOOR MUSCLES. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750090.	0.3	7

#	Article	IF	CITATIONS
73	Application of virtual reality techniques to a birth simulation. , 2017, , .		3
74	Biomechanical Study of the Vestibular System of the Inner Ear Using a Numerical Method. Procedia IUTAM, 2017, 24, 30-37.	1.2	6
75	The management of episiotomy technique and its effect on pelvic floor muscles during a malposition childbirth. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 1249-1259.	0.9	10
76	Modeling of soft tissues with damage. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2017, 231, 131-139.	0.7	2
77	Biomechanical Childbirth Simulations. , 2016, , 415-431.		0
78	Fracture toughness of the interface between Ni–Cr/ceramic, alumina/ceramic and zirconia/ceramic systems. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 817-829.	1.7	3
79	A biomechanical analysis on the impact of episiotomy during childbirth. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1523-1534.	1.4	31
80	Finite element modelling of sound transmission from outer to inner ear. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2016, 230, 999-1007.	1.0	22
81	Effects of the fibers distribution in the human eardrum: A biomechanical study. Journal of Biomechanics, 2016, 49, 1518-1523.	0.9	9
82	Numerical simulation of the damage evolution in the pelvic floor muscles during childbirth. Journal of Biomechanics, 2016, 49, 594-601.	0.9	32
83	Establishing the biomechanical properties of the pelvic soft tissues through an inverse finite element analysis using magnetic resonance imaging. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2016, 230, 298-309.	1.0	23
84	A study on the formability of aluminum tailor welded blanks produced by friction stir welding. International Journal of Advanced Manufacturing Technology, 2016, 83, 2129-2141.	1.5	57
85	Finite element analysis of the transfer of sound in the myringosclerotic ear. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 248-256.	0.9	7
86	Cellular modelling in functional tissue engineering: review oriented for pelvic floor dysfunctions. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230, 5-17.	0.7	1
87	Modeling the contraction of the pelvic floor muscles. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 347-356.	0.9	15
88	Effect of surgical mesh implant in the uterine prolapse correction. , 2015, , .		1
89	Fibre Reinforcement in Living Cells: A Preliminary Study of the F-actin Filaments. Procedia Engineering, 2015, 110, 2-7.	1.2	1
90	A structural damage model for pelvic floor muscles. , 2015, , .		0

#	Article	IF	Citations
91	Numerical simulation of the maneuvers performed in vestibular rehabilitation. , 2015, , .		O
92	Necromechanics: Death-induced changes in the mechanical properties of human tissues. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2015, 229, 343-349.	1.0	7
93	Study on the influence of the fetus head molding on the biomechanical behavior of the pelvic floor muscles, during vaginal delivery. Journal of Biomechanics, 2015, 48, 1600-1605.	0.9	39
94	TOTAL OSSICULAR REPLACEMENT PROSTHESIS OF THE MIDDLE EAR: A BIOMECHANICAL ANALYSIS. Journal of Mechanics in Medicine and Biology, 2015, 15, 1540006.	0.3	7
95	Football practice and urinary incontinence: Relation between morphology, function and biomechanics. Journal of Biomechanics, 2015, 48, 1587-1592.	0.9	30
96	Using an inverse method for optimizing the material constants of the Mooney-Rivlin constitutive model. , 2015 , , .		1
97	Study of Formability of Sandwich Shells with Metal Foam Cores Based on Punch Penetration Test. Key Engineering Materials, 2015, 651-653, 1307-1311.	0.4	0
98	Biomechanical study on the bladder neck and urethral positions: Simulation of impairment of the pelvic ligaments. Journal of Biomechanics, 2015, 48, 217-223.	0.9	52
99	A comparative study of forming limit diagram prediction of tailor welded blanks. International Journal of Material Forming, 2015, 8, 293-304.	0.9	20
100	Comparison of otoacoustic emissions in patients with tinnitus having normal hearing versus mild hearing loss. International Tinnitus Journal, 2015, 19, 39-46.	0.1	3
101	Biomechanical Study of the Cervical Spine. Lecture Notes in Computational Vision and Biomechanics, 2015, , 91-103.	0.5	0
102	Injury Simulation of Anterior Cruciate Ligament Using Isogeometric Analysis. Lecture Notes in Computational Vision and Biomechanics, 2015, , 105-121.	0.5	0
103	ANALYSIS OF EARDRUM PATHOLOGIES USING THE FINITE ELEMENT METHOD. Journal of Mechanics in Medicine and Biology, 2014, 14, 1450034.	0.3	11
104	The biomechanical effects of stapes replacement by prostheses on the tympanoâ€ossicular chain. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 1409-1420.	1.0	9
105	Study on the forming of sandwich shells with closed-cell foam cores. International Journal of Material Forming, 2014, 7, 413-424.	0.9	10
106	Implant shape influence on the mechanical behavior of breast implants., 2013,,.		3
107	Biomechanical study of myringotomy through simple incision and drainage tube insertion. , 2013, , .		0
108	Nitinol artificial anterior cruciate ligament: A finite element study. , 2013, , .		1

#	Article	IF	Citations
109	Moment of inertia as a means to evaluate the biomechanical impact of pelvic organ prolapse. International Journal of Urology, 2013, 20, 86-92.	0.5	8
110	The influence of muscles activation on the dynamical behaviour of the tympano-ossicular system of the middle ear. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 392-402.	0.9	20
111	The influence of regional profiles and senescence on the biomechanical properties of the temporalis muscle. Journal of Biomechanics, 2013, 46, 1592-1595.	0.9	2
112	Experimental and Numerical Study on the Temperature Field during Surface Grinding of a Ti-6Al-4V Titanium Alloy. Mechanics of Advanced Materials and Structures, 2013, 20, 397-404.	1.5	6
113	Magnetic resonance imaging of the pelvic floor: From clinical to biomechanical imaging. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2013, 227, 1324-1332.	1.0	14
114	Biomechanical study of a fetus during a vaginal delivery. , 2013, , .		1
115	Numerical Modelling and Experimental Study of Sandwich Shells with Metal Foam Cores. Key Engineering Materials, 2012, 504-506, 449-454.	0.4	3
116	STAPEDOTOMY-HOUGH TECHNIQUE TO CORRECT OTOSCLEROSIS. Journal of Biomechanics, 2012, 45, S183.	0.9	0
117	Experimental study of the influence of senescence in the biomechanical properties of the temporal tendon and deep temporal fascia based on uniaxial tension tests. Journal of Biomechanics, 2012, 45, 199-201.	0.9	25
118	Experimental and numerical study of the temperature field during creep feed grinding. International Journal of Advanced Manufacturing Technology, 2012, 61, 127-134.	1.5	21
119	Modeling of Sandwich Sheets with Metallic Foam. , 2011, , .		1
120	The Influence of the Mechanical Behaviour of the Middle Ear Ligaments: A Finite Element Analysis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2011, 225, 68-76.	1.0	39
121	Vaginal Tissue Properties versus Increased Intra-Abdominal Pressure: A Preliminary Biomechanical Study. Gynecologic and Obstetric Investigation, 2011, 71, 145-150.	0.7	11
122	An approach on determining the displacements of the pelvic floor during voluntary contraction using numerical simulation and MRI. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 365-370.	0.9	18
123	Analysis of Sandwich Shells with Metallic Foam Cores based on the Uniaxial Tensile Test. , 2011, , .		0
124	The Influence of Pelvic Muscle Activation During Vaginal Delivery. Obstetrics and Gynecology, 2010, 115, 804-808.	1.2	40
125	Translation of biomechanics research to urogynecology. Archives of Gynecology and Obstetrics, 2010, 282, 149-155.	0.8	12
126	A simulation study of the effect of some parameters in thermal analysis of creep feed grinding. International Journal of Material Forming, 2010, 3, 911-914.	0.9	4

#	Article	IF	Citations
127	Computational modeling approach to study the effects of fetal head flexion during vaginal delivery. American Journal of Obstetrics and Gynecology, 2010, 203, 217.e1-217.e6.	0.7	45
128	Evaluation of pelvic floor muscle cross-sectional area using a 3D computer model based on MRI in women with and without prolapse. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2010, 153, 110-111.	0.5	6
129	The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. Journal of Biomechanics, 2009, 42, 1301-1306.	0.9	70
130	On the temperature field during superficial grinding: an experimental study. International Journal of Advanced Manufacturing Technology, 2009, 40, 1084-1092.	1.5	8
131	The influence of an occipito-posterior malposition on the biomechanical behavior of the pelvic floor. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2009, 144, S166-S169.	0.5	54
132	Simulation of dissimilar tailor-welded tubular hydroforming processes using EAS-based solid finite elements. International Journal of Advanced Manufacturing Technology, 2008, 37, 670-689.	1.5	19
133	Numerical Simulation of Hydroforming Process Involving a Tubular Blank with Dissimilar Thickness. Materials and Manufacturing Processes, 2007, 22, 286-291.	2.7	9
134	Numerical simulation of the hydroforming manufacturing process of dissimilar tailor-welded tubular parts using innovative solid finite elements. AIP Conference Proceedings, 2007, , .	0.3	1
135	Study of hydroformed tailor-welded tubular parts with dissimilar thickness. Journal of Materials Processing Technology, 2007, 184, 363-371.	3.1	16
136	Finite Element Studies of the Deformation of the Pelvic Floor. Annals of the New York Academy of Sciences, 2007, 1101, 316-334.	1.8	62
137	Deformation of the pelvic floor muscles during a vaginal delivery. International Urogynecology Journal, 2007, 19, 65-71.	0.7	105
138	Sheet metal forming simulation using EAS solid-shell finite elements. Finite Elements in Analysis and Design, 2006, 42, 1137-1149.	1.7	29
139	Biomechanical simulation of middle ear using hyperelastic models. Journal of Biomechanics, 2006, 39, 5388-S389.	0.9	6
140	Enhancedtransverse shear strain shell formulation applied to large elasto-plastic deformation problems. International Journal for Numerical Methods in Engineering, 2005, 62, 1360-1398.	1.5	23
141	Fully Integrated EAS-Based Solid-Shell Finite Elements in Implicit Sheet Metal Forming Simulations. AIP Conference Proceedings, 2005, , .	0.3	0
142	Numerical Study of Hydroforming with Tailor-Welded Tubular Blanks. AIP Conference Proceedings, 2005, , .	0.3	2
143	Enhanced Assumed Strain Shell and Solid-Shell Elements: Application in Sheet Metal Forming Processes. AIP Conference Proceedings, 2004, , .	0.3	4
144	FEM Analysis of Sandwich Shells with Metallic Foam Cores. Key Engineering Materials, 0, 473, 659-666.	0.4	3

#	Article	IF	CITATIONS
145	Study of Formability of Sandwich Shells with Metal Foam Cores. Key Engineering Materials, 0, 554-557, 2252-2255.	0.4	2