
Kai Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3987868/publications.pdf Version: 2024-02-01

KALCHEN

#	Article	IF	CITATIONS
1	Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life. Science, 2016, 354, 1048-1051.	6.0	465
2	Engineering new catalytic activities in enzymes. Nature Catalysis, 2020, 3, 203-213.	16.1	465
3	Stereoselective Synthesis of Chiral αâ€Aminoâ€Î²â€Lactams through Palladium(II)â€Catalyzed Sequential Monoarylation/Amidation of C(sp ³)H Bonds. Angewandte Chemie - International Edition, 2013, 52, 13588-13592.	7.2	318
4	Pd(ii)-catalyzed alkoxylation of unactivated C(sp3)–H and C(sp2)–H bonds using a removable directing group: efficient synthesis of alkyl ethers. Chemical Science, 2013, 4, 4187.	3.7	280
5	Genetically programmed chiral organoborane synthesis. Nature, 2017, 552, 132-136.	13.7	237
6	Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp3 C–H functionalization. Nature, 2019, 565, 67-72.	13.7	233
7	Pd(ii)-catalyzed alkylation of unactivated C(sp3)–H bonds: efficient synthesis of optically active unnatural α-amino acids. Chemical Science, 2013, 4, 3906.	3.7	202
8	Stereoselective Synthesis of Chiral β-Fluoro α-Amino Acids via Pd(II)-Catalyzed Fluorination of Unactivated Methylene C(sp ³)–H Bonds: Scope and Mechanistic Studies. Journal of the American Chemical Society, 2015, 137, 8219-8226.	6.6	183
9	Enzymatic construction of highly strained carbocycles. Science, 2018, 360, 71-75.	6.0	179
10	Sulfonamideâ€Promoted Palladium(II)â€Catalyzed Alkylation of Unactivated Methylene C(sp ³)H Bonds with Alkyl Iodides. Angewandte Chemie - International Edition, 2014, 53, 11950-11954.	7.2	131
11	Divergent and Stereoselective Synthesis of βâ€Silylâ€Î±â€Amino Acids through Palladiumâ€Catalyzed Intermolecular Silylation of Unactivated Primary and Secondary Câ^H Bonds. Angewandte Chemie - International Edition, 2016, 55, 13859-13862.	7.2	125
12	Diverse Engineered Heme Proteins Enable Stereodivergent Cyclopropanation of Unactivated Alkenes. ACS Central Science, 2018, 4, 372-377.	5.3	113
13	Alternate Heme Ligation Steers Activity and Selectivity in Engineered Cytochrome P450-Catalyzed Carbene-Transfer Reactions. Journal of the American Chemical Society, 2018, 140, 16402-16407.	6.6	106
14	Pd(II)-Catalyzed Direct Sulfonylation of Unactivated C(sp ³)–H Bonds with Sodium Sulfinates. Organic Letters, 2015, 17, 3552-3555.	2.4	105
15	Directed Evolution of a Cytochrome P450 Carbene Transferase for Selective Functionalization of Cyclic Compounds. Journal of the American Chemical Society, 2019, 141, 8989-8995.	6.6	99
16	Stereoselective Enzymatic Synthesis of Heteroatom-Substituted Cyclopropanes. ACS Catalysis, 2018, 8, 2629-2634.	5.5	96
17	In Situ Generation and Stabilization of Accessible Cu/Cu ₂ 0 Heterojunctions inside Organic Frameworks for Highly Efficient Catalysis. Angewandte Chemie - International Edition, 2020, 59, 1925-1931.	7.2	81
18	A general and practical palladium-catalyzed monoarylation of β-methyl C(sp3)–H of alanine. Chemical Communications, 2014, 50, 13924-13927.	2.2	78

Kai Chen

#	Article	IF	CITATIONS
19	Stereoselective alkoxycarbonylation of unactivated C(sp3)–H bonds with alkyl chloroformates via Pd(II)/Pd(IV) catalysis. Nature Communications, 2016, 7, 12901.	5.8	66
20	Engineering Cytochrome P450s for Enantioselective Cyclopropenation of Internal Alkynes. Journal of the American Chemical Society, 2020, 142, 6891-6895.	6.6	63
21	Palladium atalyzed Arylation of Unactivated γâ€Methylene C(sp ³)H and δâ€CH Bonds with Oxazoline arboxylate Auxiliary. Chemistry - A European Journal, 2015, 21, 17503-17507.	an 1.7	59
22	Sequential C–S and S–N Coupling Approach to Sulfonamides. Organic Letters, 2020, 22, 1841-1845.	2.4	57
23	Practical Synthesis of <i>anti</i> â€Î²â€Hydroxyâ€Î±â€Amino Acids by Pd ^{II} â€Catalyzed Sequential C(sp ³)H Functionalization. Chemistry - A European Journal, 2015, 21, 3264-3270.	1.7	53
24	Sterically hindered N-heterocyclic carbene/palladium(<scp>ii</scp>) catalyzed Suzuki–Miyaura coupling of nitrobenzenes. Chemical Communications, 2019, 55, 9287-9290.	2.2	48
25	Dual-function enzyme catalysis for enantioselective carbon–nitrogen bond formation. Nature Chemistry, 2021, 13, 1166-1172.	6.6	48
26	Transformation of Metalâ€Organic Frameworks into Stable Organic Frameworks with Inherited Skeletons and Catalytic Properties. Angewandte Chemie - International Edition, 2019, 58, 8119-8123.	7.2	41
27	Palladium-catalyzed sequential monoarylation/amidation of C(sp ³)–H bonds: stereoselective synthesis of α-amino-β-lactams and anti-α,β-diamino acid. Chemical Communications, 2017, 53, 6351-6354.	2.2	40
28	Well-Designed <i>N</i> -Heterocyclic Carbene Ligands for Palladium-Catalyzed Denitrative C–N Coupling of Nitroarenes with Amines. ACS Catalysis, 2019, 9, 8110-8115.	5.5	40
29	Enzymatic Lactone-Carbene C–H Insertion to Build Contiguous Chiral Centers. ACS Catalysis, 2020, 10, 5393-5398.	5.5	38
30	Recent Progress in the Synthesis of Functionalized β-Lactams through Transition-Metal-Catalyzed C(sp3)–H Amidation. Synlett, 2014, 25, 1941-1945.	1.0	37
31	Palladium-catalyzed interannular meta-C–H arylation. Chemical Communications, 2017, 53, 2166-2169.	2.2	37
32	Divergent and Stereoselective Synthesis of βâ€ S ilylâ€Î±â€Amino Acids through Palladium atalyzed Intermolecular Silylation of Unactivated Primary and Secondary Câ^H Bonds. Angewandte Chemie, 2016, 128, 14063-14066.	1.6	36
33	Transformation of Metalâ€Organic Frameworks into Stable Organic Frameworks with Inherited Skeletons and Catalytic Properties. Angewandte Chemie, 2019, 131, 8203-8207.	1.6	31
34	Synthesis of chiral α-hydroxy acids via palladium-catalyzed C(sp ³)–H alkylation of lactic acid. Chemical Communications, 2016, 52, 1915-1918.	2.2	23
35	Engineered Cytochrome c-Catalyzed Lactone-Carbene B–H Insertion. Synlett, 2019, 30, 378-382.	1.0	22
36	Synthesis of benzoxazine and 1,3-oxazine derivatives via ligand-free copper(I)-catalyzed one-pot cascade addition/cyclization reaction. Tetrahedron, 2012, 68, 166-172.	1.0	19

ΚΑΙ CHEN

#	Article	IF	CITATIONS
37	In Situ Generation and Stabilization of Accessible Cu/Cu ₂ 0 Heterojunctions inside Organic Frameworks for Highly Efficient Catalysis. Angewandte Chemie, 2020, 132, 1941-1947.	1.6	19
38	Palladium-catalyzed C(sp ³)–H arylation of lactic acid: efficient synthesis of chiral β-aryl-α-hydroxy acids. Organic Chemistry Frontiers, 2016, 3, 204-208.	2.3	17
39	Copper Mediated Threeâ€Component Reactions of Alkynes, Azides, and Propargylic Carbonates: Synthesis of 5â€Allenylâ€1,2,3â€Triazoles. Advanced Synthesis and Catalysis, 2018, 360, 2435-2439.	2.1	14
40	Manganeseâ€Catalyzed Sequential Annulation between Indoles and 1, 6â€Diynes. Advanced Synthesis and Catalysis, 2018, 360, 4497-4501.	2.1	14
41	Interwrapping Distinct Metal-Organic Frameworks in Dual-MOFs for the Creation of Unique Composite Catalysts. Research, 2021, 2021, 9835935.	2.8	12
42	Suspending Ion Electrocatalysts in Charged Metal–Organic Frameworks to Improve the Conductivity and Selectivity in Electroorganic Synthesis. Chemistry - an Asian Journal, 2019, 14, 3627-3634.	1.7	9
43	Nickel(II)/ <i>N</i> â€Heterocyclic Carbene Catalyzed Desulfinylative Arylation by Câ^'S Cleavage of Aryl Sulfoxides with Phenylboronic Acids. Advanced Synthesis and Catalysis, 2020, 362, 4373-4377.	2.1	8