
Elior Peles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3987727/publications.pdf Version: 2024-02-01

FUOD DELES

#	Article	IF	CITATIONS
1	Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. Brain, 2010, 133, 2734-2748.	7.6	1,158
2	Absence of CNTNAP2 Leads to Epilepsy, Neuronal Migration Abnormalities, and Core Autism-Related Deficits. Cell, 2011, 147, 235-246.	28.9	870
3	Neu differentiation factor: A transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell, 1992, 69, 559-572.	28.9	562
4	The local differentiation of myelinated axons at nodes of Ranvier. Nature Reviews Neuroscience, 2003, 4, 968-980.	10.2	538
5	Isolation of the NeuHER-2 stimulatory ligand: A 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell, 1992, 69, 205-216.	28.9	524
6	Contactin Orchestrates Assembly of the Septate-like Junctions at the Paranode in Myelinated Peripheral Nerve. Neuron, 2001, 30, 385-397.	8.1	472
7	Juxtaparanodal clustering of <i>Shaker</i> -like K+ channels in myelinated axons depends on Caspr2 and TAG-1. Journal of Cell Biology, 2003, 162, 1149-1160.	5.2	462
8	Caspr2, a New Member of the Neurexin Superfamily, Is Localized at the Juxtaparanodes of Myelinated Axons and Associates with K+ Channels. Neuron, 1999, 24, 1037-1047.	8.1	451
9	The carbonic anhydrase domain of receptor tyrosine phosphatase β is a functional ligand for the axonal cell recognition molecule contactin. Cell, 1995, 82, 251-260.	28.9	397
10	Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Annals of Neurology, 2011, 69, 303-311.	5.3	371
11	The Axonal Membrane Protein Caspr, a Homologue of Neurexin IV, Is a Component of the Septate-like Paranodal Junctions That Assemble during Myelination. Journal of Cell Biology, 1997, 139, 1495-1506.	5.2	333
12	Exogenous and evoked oxytocin restores social behavior in the <i>Cntnap2</i> mouse model of autism. Science Translational Medicine, 2015, 7, 271ra8.	12.4	308
13	Dependence of Nodal Sodium Channel Clustering on Paranodal Axoglial Contact in the Developing CNS. Journal of Neuroscience, 1999, 19, 7516-7528.	3.6	304
14	Gliomedin Mediates Schwann Cell-Axon Interaction and the Molecular Assembly of the Nodes of Ranvier. Neuron, 2005, 47, 215-229.	8.1	279
15	Neu and its ligands: From an oncogene to neural factors. BioEssays, 1993, 15, 815-824.	2.5	269
16	Contactin-Associated Protein (Caspr) and Contactin Form a Complex That Is Targeted to the Paranodal Junctions during Myelination. Journal of Neuroscience, 2000, 20, 8354-8364.	3.6	233
17	Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation. Biochemistry, 1990, 29, 11024-11028.	2.5	228
18	A Myelin Galactolipid, Sulfatide, Is Essential for Maintenance of Ion Channels on Myelinated Axon But Not Essential for Initial Cluster Formation. Journal of Neuroscience, 2002, 22, 6507-6514.	3.6	218

#	Article	IF	CITATIONS
19	Molecular domains of myelinated axons. Current Opinion in Neurobiology, 2000, 10, 558-565.	4.2	215
20	Neurofascin as a target for autoantibodies in peripheral neuropathies. Neurology, 2012, 79, 2241-2248.	1.1	211
21	Molecular domains of myelinated axons in the peripheral nervous system. Glia, 2008, 56, 1532-1540.	4.9	191
22	A Glial Signal Consisting of Gliomedin and NrCAM Clusters Axonal Na+ Channels during the Formation of Nodes of Ranvier. Neuron, 2010, 65, 490-502.	8.1	179
23	A central role for Necl4 (SynCAM4) in Schwann cell–axon interaction and myelination. Nature Neuroscience, 2007, 10, 861-869.	14.8	178
24	Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. Journal of Cell Biology, 2002, 159, 361-372.	5.2	175
25	Induction of Neurite Outgrowth through Contactin and Nr-CAM by Extracellular Regions of Glial Receptor Tyrosine Phosphatase β. Journal of Cell Biology, 1997, 136, 907-918.	5.2	168
26	Mechanisms and Roles of Axon-Schwann Cell Interactions. Journal of Neuroscience, 2004, 24, 9250-9260.	3.6	167
27	Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene <i>kal-1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6346-6351.	7.1	155
28	Interaction of Serotonin 5-Hydroxytryptamine Type 2C Receptors with PDZ10 of the Multi-PDZ Domain Protein MUPP1. Journal of Biological Chemistry, 2001, 276, 12974-12982.	3.4	154
29	Three Mechanisms Assemble Central Nervous System Nodes of Ranvier. Neuron, 2013, 78, 469-482.	8.1	151
30	Spectrins and AnkyrinB Constitute a Specialized Paranodal Cytoskeleton. Journal of Neuroscience, 2006, 26, 5230-5239.	3.6	148
31	Auto-antibodies to contactin-associated protein 1 (Caspr) in two patients with painful inflammatory neuropathy. Brain, 2016, 139, 2617-2630.	7.6	144
32	The Nodes of Ranvier: Molecular Assembly and Maintenance. Cold Spring Harbor Perspectives in Biology, 2016, 8, a020495.	5.5	136
33	Localization of Caspr2 in Myelinated Nerves Depends on Axon–Glia Interactions and the Generation of Barriers along the Axon. Journal of Neuroscience, 2001, 21, 7568-7575.	3.6	132
34	Caspr regulates the processing of contactin and inhibits its binding to neurofascin. Journal of Cell Biology, 2003, 163, 1213-1218.	5.2	125
35	Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase β. Current Opinion in Neurobiology, 1998, 8, 117-127.	4.2	121
36	Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability. Neuron, 2018, 97, 806-822.e10.	8.1	119

#	Article	IF	CITATIONS
37	Postsynaptic Density-93 Clusters Kv1 Channels at Axon Initial Segments Independently of Caspr2. Journal of Neuroscience, 2008, 28, 5731-5739.	3.6	114
38	ADAM22, A Kv1 Channel-Interacting Protein, Recruits Membrane-Associated Guanylate Kinases to Juxtaparanodes of Myelinated Axons. Journal of Neuroscience, 2010, 30, 1038-1048.	3.6	111
39	Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2 <i>/Caspr2</i> knockout neurons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6176-6181.	7.1	108
40	G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nature Communications, 2016, 7, 10884.	12.8	107
41	Multiple Molecular Interactions Determine the Clustering of Caspr2 and Kv1 Channels in Myelinated Axons. Journal of Neuroscience, 2008, 28, 14213-14222.	3.6	106
42	Development of nodes of Ranvier. Current Opinion in Neurobiology, 2002, 12, 476-485.	4.2	104
43	Ermin, A Myelinating Oligodendrocyte-Specific Protein That Regulates Cell Morphology. Journal of Neuroscience, 2006, 26, 757-762.	3.6	104
44	Myelinating Schwann cells determine the internodal localization of Kv1.1, Kv1.2, Kvbeta2, and Caspr. Journal of Neurocytology, 1999, 28, 333-347.	1.5	103
45	Genetic Dysmyelination Alters the Molecular Architecture of the Nodal Region. Journal of Neuroscience, 2002, 22, 1726-1737.	3.6	103
46	K+ channel distribution and clustering in developing and hypomyelinated axons of the optic nerve. Journal of Neurocytology, 1999, 28, 319-331.	1.5	100
47	The tyrosine phosphatase Shp2 (PTPN11) directs Neuregulin-1/ErbB signaling throughout Schwann cell development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16704-16709.	7.1	100
48	Secreted gliomedin is a perinodal matrix component of peripheral nerves. Journal of Cell Biology, 2007, 177, 551-562.	5.2	97
49	Multi-ligand interactions with receptor-like protein tyrosine phosphatase β: implications for intercellular signaling. Trends in Biochemical Sciences, 1998, 23, 121-124.	7.5	96
50	Organization of Myelinated Axons by Caspr and Caspr2 Requires the Cytoskeletal Adapter Protein 4.1B. Journal of Neuroscience, 2010, 30, 2480-2489.	3.6	95
51	Retention of a cell adhesion complex at the paranodal junction requires the cytoplasmic region of Caspr. Journal of Cell Biology, 2002, 157, 1247-1256.	5.2	91
52	Mechanisms of node of Ranvier assembly. Nature Reviews Neuroscience, 2021, 22, 7-20.	10.2	89
53	Comprehensive Analysis of the 16p11.2 Deletion and Null Cntnap2 Mouse Models of Autism Spectrum Disorder. PLoS ONE, 2015, 10, e0134572.	2.5	85
54	Caspr3 and Caspr4, Two Novel Members of the Caspr Family Are Expressed in the Nervous System and Interact with PDZ Domains. Molecular and Cellular Neurosciences, 2002, 20, 283-297.	2.2	83

#	Article	IF	CITATIONS
55	Synaptic scaffolding molecule (S-SCAM) membrane-associated guanylate kinase with inverted organization (MAGI)-2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons. Journal of Neurochemistry, 2007, 100, 154-166.	3.9	83
56	Clustering of neuronal potassium channels is independent of their interaction with PSD-95. Journal of Cell Biology, 2002, 159, 663-672.	5.2	79
57	Somatodendritic Expression of JAM2 Inhibits Oligodendrocyte Myelination. Neuron, 2016, 91, 824-836.	8.1	79
58	N-WASP is required for membrane wrapping and myelination by Schwann cells. Journal of Cell Biology, 2011, 192, 243-250.	5.2	78
59	Biochemical analysis of the ligand for the neu oncogenic receptor. Biochemistry, 1991, 30, 3543-3550.	2.5	71
60	Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase \hat{l}^2 (RPTP \hat{l}^2) and tyrosine-phosphorylated proteins. Journal of Cell Science, 2003, 116, 1279-1289.	2.0	71
61	Loss of <i>Cntnap2</i> Causes Axonal Excitability Deficits, Developmental Delay in Cortical Myelination, and Abnormal Stereotyped Motor Behavior. Cerebral Cortex, 2019, 29, 586-597.	2.9	65
62	Genetic Deletion of Cadm4 Results in Myelin Abnormalities Resembling Charcot-Marie-Tooth Neuropathy. Journal of Neuroscience, 2013, 33, 10950-10961.	3.6	63
63	Neuronal Ig/Caspr Recognition Promotes the Formation of Axoaxonic Synapses in Mouse Spinal Cord. Neuron, 2014, 81, 120-129.	8.1	63
64	The paranodal cytoskeleton clusters Na+ channels at nodes of Ranvier. ELife, 2017, 6, .	6.0	57
65	Schwann cell spectrins modulate peripheral nerve myelination. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8009-8014.	7.1	56
66	Long-Term Maintenance of Na ⁺ Channels at Nodes of Ranvier Depends on Glial Contact Mediated by Gliomedin and NrCAM. Journal of Neuroscience, 2014, 34, 5089-5098.	3.6	55
67	Altered expression of ion channel isoforms at the node of Ranvier in PO-deficient myelin mutants. Molecular and Cellular Neurosciences, 2004, 25, 83-94.	2.2	54
68	Direct Genesis of Functional Rodent and Human Schwann Cells from Skin Mesenchymal Precursors. Stem Cell Reports, 2014, 3, 85-100.	4.8	53
69	Cellular Form of Prion Protein Inhibits Reelin-Mediated Shedding of Caspr from the Neuronal Cell Surface to Potentiate Caspr-Mediated Inhibition of Neurite Outgrowth. Journal of Neuroscience, 2010, 30, 9292-9305.	3.6	51
70	Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder. Brain, 2015, 138, 2521-2536.	7.6	50
71	Axoglial Adhesion by Cadm4 Regulates CNS Myelination. Neuron, 2019, 101, 224-231.e5.	8.1	49
72	Glial tumor cell adhesion is mediated by binding of the FNIII domain of receptor protein tyrosine phosphatase β (RPTPβ) to tenascin C. Oncogene, 2001, 20, 609-618.	5.9	48

#	Article	IF	CITATIONS
73	Identification of <i>Tmem10/Opalin</i> as an oligodendrocyte enriched gene using expression profiling combined with genetic cell ablation. Glia, 2008, 56, 1176-1186.	4.9	48
74	The neurexin superfamily of Caenorhabditis elegans. Gene Expression Patterns, 2011, 11, 144-150.	0.8	46
75	Expression of Cntnap2 (Caspr2) in multiple levels of sensory systems. Molecular and Cellular Neurosciences, 2016, 70, 42-53.	2.2	45
76	Two adhesive systems cooperatively regulate axon ensheathment and myelin growth in the CNS. Nature Communications, 2019, 10, 4794.	12.8	45
77	Cellular junctions of myelinated nerves (Review). Molecular Membrane Biology, 2002, 19, 95-101.	2.0	44
78	The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves. Journal of Cell Biology, 2012, 196, 337-344.	5.2	44
79	Internodal specializations of myelinated axons in the central nervous system. Cell and Tissue Research, 2001, 305, 53-66.	2.9	42
80	The making of a node: a co-production of neurons and glia. Current Opinion in Neurobiology, 2013, 23, 1049-1056.	4.2	41
81	Kv7.2 regulates the function of peripheral sensory neurons. Journal of Comparative Neurology, 2014, 522, 3262-3280.	1.6	39
82	Loss of Glial Neurofascin155 Delays Developmental Synapse Elimination at the Neuromuscular Junction. Journal of Neuroscience, 2014, 34, 12904-12918.	3.6	39
83	Close Similarity between Drosophila Neurexin IV and Mammalian Caspr Protein Suggests a Conserved Mechanism for Cellular Interactions. Cell, 1997, 88, 745-746.	28.9	38
84	Perlecan is recruited by dystroglycan to nodes of Ranvier and binds the clustering molecule gliomedin. Journal of Cell Biology, 2015, 208, 313-329.	5.2	37
85	Caspr and Caspr2 Are Required for Both Radial and Longitudinal Organization of Myelinated Axons. Journal of Neuroscience, 2014, 34, 14820-14826.	3.6	36
86	Coordinated internodal and paranodal adhesion controls accurate myelination by oligodendrocytes. Journal of Cell Biology, 2019, 218, 2887-2895.	5.2	34
87	Thrombin receptor PAR-1 on myelin at the node of Ranvier: a new anatomy and physiology of conduction block. Brain, 2008, 131, 1113-1122.	7.6	33
88	A Novel Caspr Mutation Causes the Shambling Mouse Phenotype by Disrupting Axoglial Interactions of Myelinated Nerves. Journal of Neuropathology and Experimental Neurology, 2009, 68, 1207-1218.	1.7	33
89	Interaction proteomics of canonical Caspr2 (CNTNAP2) reveals the presence of two Caspr2 isoforms with overlapping interactomes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 827-833.	2.3	32
90	Assembly of CNS Nodes of Ranvier in Myelinated Nerves Is Promoted by the Axon Cytoskeleton. Current Biology, 2017, 27, 1068-1073.	3.9	32

#	Article	IF	CITATIONS
91	Essential Function of Protein 4.1G in Targeting of Membrane Protein Palmitoylated 6 into Schmidt-Lanterman Incisures in Myelinated Nerves. Molecular and Cellular Biology, 2012, 32, 199-205.	2.3	29
92	An essential role of MAG in mediating axon–myelin attachment in Charcot–Marie–Tooth 1A disease. Neurobiology of Disease, 2013, 49, 221-231.	4.4	29
93	Signal transduction by the neu/ebrB-2 receptor: A potential target for anti-tumor therapy. Journal of Steroid Biochemistry and Molecular Biology, 1992, 43, 95-103.	2.5	23
94	Differential clustering of Caspr by oligodendrocytes and Schwann cells. Journal of Neuroscience Research, 2009, 87, 3492-3501.	2.9	23
95	The myelin proteolipid plasmolipin forms oligomers and induces liquid-ordered membranes in the Golgi complex. Journal of Cell Science, 2015, 128, 2293-2302.	2.0	21
96	N-Wasp Regulates Oligodendrocyte Myelination. Journal of Neuroscience, 2020, 40, 6103-6111.	3.6	21
97	Neuronal deletion of <i>Wwox</i> , associated with WOREE syndrome, causes epilepsy and myelin defects. Brain, 2021, 144, 3061-3077.	7.6	21
98	Molecular organization of the nodal region is not altered in spontaneously diabetic BB-Wistar rats. Journal of Neuroscience Research, 2001, 65, 139-149.	2.9	18
99	Identification of novel cell-adhesion molecules in peripheral nerves using a signal-sequence trap. Neuron Glia Biology, 2006, 2, 27-38.	1.6	18
100	Glial M6B stabilizes the axonal membrane at peripheral nodes of Ranvier. Glia, 2018, 66, 801-812.	4.9	17
101	The clustering of voltageâ€gated sodium channels in various excitable membranes. Developmental Neurobiology, 2020, 81, 427-437.	3.0	17
102	A New Player in CNS Myelination. Neuron, 2006, 49, 777-778.	8.1	15
103	Dependence of paranodal junctional gap width on transverse bands. Journal of Comparative Neurology, 2012, 520, 2774-2784.	1.6	14
104	TDP-43 maximizes nerve conduction velocity by repressing a cryptic exon for paranodal junction assembly in Schwann cells. ELife, 2021, 10, .	6.0	14
105	A novel method for isolating Schwann cells using the extracellular domain of Necl1. Journal of Neuroscience Research, 2009, 87, 3288-3296.	2.9	12
106	Paranodal permeability in "myelin mutants― Glia, 2011, 59, 1447-1457.	4.9	12
107	Differential Contribution of Cadm1–Cadm3 Cell Adhesion Molecules to Peripheral Myelinated Axons. Journal of Neuroscience, 2021, 41, 1393-1400.	3.6	12
108	Accumulation of Neurofascin at Nodes of Ranvier Is Regulated by a Paranodal Switch. Journal of Neuroscience, 2020, 40, 5709-5723.	3.6	10

#	Article	IF	CITATIONS
109	A <i>CADM3</i> variant causes Charcot-Marie-Tooth disease with marked upper limb involvement. Brain, 2021, 144, 1197-1213.	7.6	10
110	Precise Spatiotemporal Control of Nodal Na+ Channel Clustering by Bone Morphogenetic Protein-1/Tolloid-like Proteinases. Neuron, 2020, 106, 806-815.e6.	8.1	9
111	Specific inhibition of secreted NRG1 types l–II by heparin enhances Schwann Cell myelination. Glia, 2016, 64, 1227-1234.	4.9	7
112	Functional Organization of the Nodes of Ranvier. , 2004, , 89-116.		6
113	Axonal spectrins: All-purpose fences. Journal of Cell Biology, 2013, 203, 381-383.	5.2	4
114	Schwann-cell-derived CMTM6 restricts radial axonal growth. Nature Communications, 2020, 11, 5044.	12.8	4
115	Localization of the paranodal protein Caspr in the mammalian retina. Molecular Vision, 2010, 16, 1854-63.	1.1	2
116	Molecular Specializations at the Glia-Axon Interface. , 2005, , 45-56.		1