Claudine Kraft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3987437/publications.pdf

Version: 2024-02-01

60 papers 12,479 citations

36 h-index 53 g-index

61 all docs

61 docs citations

61 times ranked

22027 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	3.5	1,230
3	Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nature Cell Biology, 2008, 10, 602-610.	4.6	639
4	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	3.5	615
5	Selective autophagy: ubiquitin-mediated recognition and beyond. Nature Cell Biology, 2010, 12, 836-841.	4.6	567
6	SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature, 2015, 519, 477-481.	13.7	561
7	Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO Journal, 2012, 31, 4304-4317.	3.5	378
8	Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO Journal, 2003, 22, 6598-6609.	3.5	344
9	Roles of Polo-like Kinase 1 in the Assembly of Functional Mitotic Spindles. Current Biology, 2004, 14, 1712-1722.	1.8	312
10	Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast. Science Signaling, 2010, 3, rs4.	1.6	277
11	Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase. Molecular Cell, 2014, 53, 471-483.	4.5	274
12	Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO Journal, 2012, 31, 3691-3703.	3.5	237
13	The WD40 Propeller Domain of Cdh1 Functions as a Destruction Box Receptor for APC/C Substrates. Molecular Cell, 2005, 18, 543-553.	4.5	198
14	Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. Journal of Cell Biology, 2018, 217, 2743-2763.	2.3	194
15	Regulation of Autophagy By Signaling Through the Atg1/ULK1 Complex. Journal of Molecular Biology, 2016, 428, 1725-1741.	2.0	139
16	Selective types of autophagy in yeast. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1404-1412.	1.9	135
17	Mechanisms and regulation of autophagosome formation. Current Opinion in Cell Biology, 2012, 24, 496-501.	2.6	120
18	Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metabolism, 2021, 33, 2464-2483.e18.	7.2	113

#	Article	IF	CITATIONS
19	The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation. ELife, 2015, 4, e07736.	2.8	102
20	The anaphase promoting complex/cyclosome is recruited to centromeres by the spindle assembly checkpoint. Nature Cell Biology, 2004, 6, 892-898.	4.6	94
21	Substrate binding on the APC/C occurs between the coactivator Cdh1 and the processivity factor Doc1. Nature Structural and Molecular Biology, 2011, 18, 6-13.	3.6	89
22	Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome–vacuole fusion. Journal of Cell Biology, 2018, 217, 3656-3669.	2.3	88
23	Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor <scp>A</scp> tg19. EMBO Reports, 2014, 15, 862-870.	2.0	85
24	Two Independent Pathways within Selective Autophagy Converge to Activate Atg1 Kinase at the Vacuole. Molecular Cell, 2016, 64, 221-235.	4.5	80
25	Atg4 proteolytic activity can be inhibited by Atg1 phosphorylation. Nature Communications, 2017, 8, 295.	5.8	70
26	Autophagosomes are formed at a distinct cellular structure. Current Opinion in Cell Biology, 2020, 65, 50-57.	2.6	67
27	Activation of Atg1 kinase in autophagy by regulated phosphorylation. Autophagy, 2010, 6, 1168-1178.	4.3	59
28	Conserved Atg8 recognition sites mediate Atg4 association with autophagosomal membranes and Atg8 deconjugation. EMBO Reports, 2017, 18, 765-780.	2.0	59
29	Mechanism of cargo-directed Atg8 conjugation during selective autophagy. ELife, 2016, 5, .	2.8	57
30	Assays to Monitor Autophagy in Saccharomyces cerevisiae. Cells, 2017, 6, 23.	1.8	53
31	An Early mtUPR: Redistribution of the Nuclear Transcription Factor Rox1 to Mitochondria Protects against Intramitochondrial Proteotoxic Aggregates. Molecular Cell, 2020, 77, 180-188.e9.	4.5	53
32	Vac8 spatially confines autophagosome formation at the vacuole. Journal of Cell Science, 2019, 132, .	1.2	48
33	Ribophorin I Associates with a Subset of Membrane Proteins after Their Integration at the Sec61 Translocon. Journal of Biological Chemistry, 2005, 280, 4195-4206.	1.6	41
34	Control of Ubp3 ubiquitin protease activity by the Hog1 SAPK modulates transcription upon osmostress. EMBO Journal, 2011, 30, 3274-3284.	3.5	41
35	Is the Rsp5 ubiquitin ligase involved in the regulation of ribophagy?. Autophagy, 2008, 4, 838-840.	4.3	40
36	Atg1 kinase organizes autophagosome formation by phosphorylating Atg9. Autophagy, 2014, 10, 1338-1340.	4.3	39

#	Article	IF	Citations
37	Phosphoregulation of the autophagy machinery by kinases and phosphatases. Autophagy, 2022, 18, 104-123.	4.3	33
38	The E2-C Vihar Is Required for the Correct Spatiotemporal Proteolysis of Cyclin B and Itself Undergoes Cyclical Degradation. Current Biology, 2004, 14, 1723-1733.	1.8	32
39	Telomerase Is Essential to Alleviate Pif1-Induced Replication Stress at Telomeres. Genetics, 2009, 183, 779-791.	1.2	28
40	Atg1 kinase regulates autophagosomeâ€vacuole fusion by controlling SNARE bundling. EMBO Reports, 2020, 21, e51869.	2.0	26
41	The multi-functional SNARE protein Ykt6 in autophagosomal fusion processes. Cell Cycle, 2019, 18, 639-651.	1.3	25
42	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. PLoS Biology, 2020, 18, e3000874.	2.6	19
43	Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth. Cell Reports, 2022, 38, 110290.	2.9	16
44	An <i>in vivo</i> detection system for transient and lowâ€abundant protein interactions and their kinetics in budding yeast. Yeast, 2015, 32, 355-365.	0.8	15
45	Global kinome profiling reveals DYRK1A as critical activator of the human mitochondrial import machinery. Nature Communications, 2021, 12, 4284.	5.8	15
46	Spatial control of avidity regulates initiation and progression of selective autophagy. Nature Communications, 2021, 12, 7194.	5.8	14
47	Autophagy Competes for a Common Phosphatidylethanolamine Pool with Major Cellular PE-Consuming Pathways in <i>Saccharomyces cerevisiae</i> . Genetics, 2015, 199, 475-485.	1.2	13
48	Mitotic Entry: Tipping the Balance. Current Biology, 2003, 13, R445-R446.	1.8	12
49	Scaffold proteins in bulk and selective autophagy. Progress in Molecular Biology and Translational Science, 2020, 172, 15-35.	0.9	9
50	Small but mighty: Atg8s and Rabs in membrane dynamics during autophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119064.	1.9	9
51	Ykt6 mediates autophagosome-vacuole fusion. Molecular and Cellular Oncology, 2018, 5, e1526006.	0.3	7
52	Driving next-generation autophagy researchers towards translation (DRIVE), an international PhD training program on autophagy. Autophagy, 2019, 15, 347-351.	4.3	4
53	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle., 2020, 18, e3000874.		0
54	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle., 2020, 18, e3000874.		0

#	Article	IF	CITATIONS
55	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle., 2020, 18, e3000874.		O
56	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle., 2020, 18, e3000874.		0
57	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle., 2020, 18, e3000874.		O
58	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle., 2020, 18, e3000874.		0
59	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle., 2020, 18, e3000874.		O
60	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle., 2020, 18, e3000874.		0