Koji Sugioka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/398741/publications.pdf Version: 2024-02-01

KOU SUCIORA

#	Article	IF	CITATIONS
1	Ultrafast lasers—reliable tools for advanced materials processing. Light: Science and Applications, 2014, 3, e149-e149.	7.7	1,021
2	Femtosecond laser three-dimensional micro- and nanofabrication. Applied Physics Reviews, 2014, 1, 041303.	5.5	326
3	Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Optics Letters, 2003, 28, 55.	1.7	274
4	Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Optics Letters, 2004, 29, 2007.	1.7	230
5	Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab on A Chip, 2012, 12, 746.	3.1	197
6	Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab on A Chip, 2014, 14, 3447-3458.	3.1	190
7	3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Applied Physics A: Materials Science and Processing, 2003, 76, 857-860.	1.1	187
8	Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Optics Letters, 2003, 28, 1144.	1.7	184
9	Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture. Applied Physics A: Materials Science and Processing, 2005, 81, 1-10.	1.1	168
10	Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Optics Letters, 2010, 35, 1106.	1.7	167
11	Femtosecond laser processing for optofluidic fabrication. Lab on A Chip, 2012, 12, 3576.	3.1	159
12	Femtosecond laser nanostructuring in porous glass with sub-50Ânm feature sizes. Optics Letters, 2013, 38, 187.	1.7	149
13	Progress in ultrafast laser processing and future prospects. Nanophotonics, 2017, 6, 393-413.	2.9	140
14	Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics, 2018, 7, 613-634.	2.9	134
15	Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of shipâ€inâ€aâ€bottle biochip. Laser and Photonics Reviews, 2014, 8, 458-467.	4.4	126
16	3D Microfluidic Surfaceâ€Enhanced Raman Spectroscopy (SERS) Chips Fabricated by Allâ€Femtosecondâ€Laserâ€Processing for Realâ€Time Sensing of Toxic Substances. Advanced Functional Materials, 2018, 28, 1706262.	7.8	126
17	Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Lab on A Chip, 2013, 13, 1626.	3.1	113
18	Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomedical Microdevices, 2008, 10, 403-410.	1.4	110

#	Article	IF	CITATIONS
19	In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light: Science and Applications, 2015, 4, e228-e228.	7.7	107
20	Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing. Lab on A Chip, 2013, 13, 4608.	3.1	103
21	Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Optics Letters, 2010, 35, 3225.	1.7	98
22	3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab on A Chip, 2011, 11, 2109.	3.1	96
23	Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis. RSC Advances, 2015, 5, 24072-24080.	1.7	93
24	Electro-optic integration of embedded electrodes and waveguides in LiNbO_3 using a femtosecond laser. Optics Letters, 2008, 33, 2281.	1.7	88
25	Threeâ€dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. Laser and Photonics Reviews, 2010, 4, 386-400.	4.4	88
26	Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining. Applied Physics A: Materials Science and Processing, 2006, 85, 11-14.	1.1	87
27	Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electronic Advances, 2019, 2, 19000201-19000218.	6.4	82
28	Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser. Optics Letters, 2010, 35, 282.	1.7	75
29	Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser. Optics Express, 2003, 11, 1809.	1.7	74
30	Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass. Sensors, 2014, 14, 19402-19440.	2.1	70
31	Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser. Journal of Applied Physics, 2005, 97, 063517.	1.1	67
32	Selective metallization on insulator surfaces with femtosecond laser pulses. Optics Express, 2007, 15, 12743.	1.7	67
33	Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications. Nanoscale, 2020, 12, 13431-13441.	2.8	67
34	Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses. Optics Letters, 2007, 32, 1536.	1.7	65
35	Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate. Lab on A Chip, 2015, 15, 1515-1523.	3.1	64
36	Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application. Applied Physics A: Materials Science and Processing, 2004, 78, 1029-1032.	1.1	62

#	Article	IF	CITATIONS
37	Allâ€Glass 3D Optofluidic Microchip with Builtâ€in Tunable Microlens Fabricated by Femtosecond Laserâ€Assisted Etching. Advanced Optical Materials, 2018, 6, 1701299.	3.6	61
38	Three-dimensional microfluidic structure embedded in photostructurable glass by femtosecond laser for lab-on-chip applications. Applied Physics A: Materials Science and Processing, 2004, 79, 815-817.	1.1	60
39	Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train. Optics Letters, 2011, 36, 2734.	1.7	60
40	Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application. Optics Express, 2005, 13, 7225.	1.7	59
41	High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Scientific Reports, 2016, 6, 19989.	1.6	58
42	Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications. Applied Surface Science, 2005, 248, 172-176.	3.1	56
43	Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring. International Journal of Extreme Manufacturing, 2020, 2, 015001.	6.3	54
44	Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review. International Journal of Extreme Manufacturing, 2019, 1, 012003.	6.3	51
45	Laser ablation in liquids for nanomaterial synthesis: diversities of targets and liquids. JPhys Photonics, 2021, 3, 042002.	2.2	50
46	Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Applied Physics A: Materials Science and Processing, 2007, 89, 951-955.	1.1	49
47	Low-threshold whispering-gallery-mode microlasers fabricated in a Nd:glass substrate by three-dimensional femtosecond laser micromachining. Optics Letters, 2013, 38, 1458.	1.7	47
48	Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining. Applied Physics Letters, 2010, 96, 041108.	1.5	44
49	Carbonized Hybrid Micro/Nanostructured Metasurfaces Produced by Femtosecond Laser Ablation in Organic Solvents for Biomimetic Antireflective Surfaces. ACS Applied Nano Materials, 2020, 3, 1855-1871.	2.4	43
50	Fabrication of three-dimensional proteinaceous micro- and nano-structures by femtosecond laser cross-linking. Opto-Electronic Advances, 2018, 1, 18000801-18000818.	6.4	43
51	Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels. Scientific Reports, 2016, 6, 33281.	1.6	42
52	Characterization and control of peak intensity distribution at the focus of a spatiotemporally focused femtosecond laser beam. Optics Express, 2014, 22, 9734.	1.7	41
53	Femtosecond laser microprocessing with three-dimensionally isotropic spatial resolution using crossed-beam irradiation. Optics Letters, 2006, 31, 208.	1.7	38
54	Fabrication of 3D microfluidic structures inside glass by femtosecond laser micromachining. Applied Physics A: Materials Science and Processing, 2014, 114, 215-221.	1.1	37

#	Article	IF	CITATIONS
55	Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining. New Journal of Physics, 2011, 13, 083014.	1.2	36
56	Fabrication of integrated microchip for optical sensing byÂfemtosecond laser direct writing of Foturan glass. Applied Physics A: Materials Science and Processing, 2008, 93, 225-229.	1.1	35
57	Attomolar Sensing Based on Liquid Interface-Assisted Surface-Enhanced Raman Scattering in Microfluidic Chip by Femtosecond Laser Processing. ACS Applied Materials & Interfaces, 2020, 12, 42328-42338.	4.0	35
58	Magnetic Fe@FeOx, Fe@C and α-Fe2O3 Single-Crystal Nanoblends Synthesized by Femtosecond Laser Ablation of Fe in Acetone. Nanomaterials, 2018, 8, 631.	1.9	33
59	Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bulletin, 2011, 36, 1020-1027.	1.7	32
60	Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation. Optics Express, 2012, 20, 28893.	1.7	32
61	Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application. International Journal of Extreme Manufacturing, 2020, 2, 045001.	6.3	31
62	Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing. Applied Physics A: Materials Science and Processing, 2007, 88, 699-704.	1.1	29
63	Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining. Optics Express, 2014, 22, 14792.	1.7	29
64	Surface-Enhanced Raman Scattering Substrate Fabricated by Femtosecond Laser Direct Writing. Japanese Journal of Applied Physics, 2008, 47, 189-192.	0.8	28
65	Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication. Microsystems and Nanoengineering, 2017, 3, 16078.	3.4	28
66	Spontaneous Shape Alteration and Size Separation of Surfactant-Free Silver Particles Synthesized by Laser Ablation in Acetone during Long-Period Storage. Nanomaterials, 2018, 8, 529.	1.9	28
67	3D integration of microcomponents in a single glass chip by femtosecond laser direct writing for biochemical analysis. Applied Surface Science, 2007, 253, 6595-6598.	3.1	27
68	Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses. Journal of Applied Physics, 2011, 109, .	1.1	27
69	Arch-like microsorters with multi-modal and clogging-improved filtering functions by using femtosecond laser multifocal parallel microfabrication. Optics Express, 2017, 25, 16739.	1.7	27
70	Reusable Surface-Enhanced Raman Spectroscopy Substrates Made of Silicon Nanowire Array Coated with Silver Nanoparticles Fabricated by Metal-Assisted Chemical Etching and Photonic Reduction. Nanomaterials, 2019, 9, 1531.	1.9	27
71	The State of the Art and Future Prospects for Laser Direct-Write for Industrial and Commercial Applications. MRS Bulletin, 2007, 32, 47-54.	1.7	26
72	Fabrication of large-volume microfluidic chamber embedded in glass using three-dimensional femtosecond laser micromachining. Microfluidics and Nanofluidics, 2011, 11, 111-117.	1.0	26

#	Article	IF	CITATIONS
73	A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining. Applied Physics A: Materials Science and Processing, 2011, 102, 179-183.	1.1	25
74	A tutorial on optics for ultrafast laser materials processing: basic microprocessing system to beam shaping and advanced focusing methods. Advanced Optical Technologies, 2012, 1, 353-364.	0.9	25
75	Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating. Lab on A Chip, 2012, 12, 3688.	3.1	25
76	Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Applied Physics Letters, 2005, 86, 171910.	1.5	23
77	Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS. Opto-Electronic Advances, 2022, 5, 210066-210066.	6.4	23
78	Rapid fabrication of optical volume gratings in Foturan glass byÂfemtosecond laser micromachining. Applied Physics A: Materials Science and Processing, 2009, 97, 853-857.	1.1	22
79	Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application. Applied Physics A: Materials Science and Processing, 2008, 90, 603-607.	1.1	21
80	Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding. Optics Express, 2013, 21, 24049.	1.7	21
81	Making the invisible visible: a microfluidic chip using a low refractive index polymer. Lab on A Chip, 2016, 16, 2481-2486.	3.1	21
82	Recent Advances in the Fabrication of Highly Sensitive Surface-Enhanced Raman Scattering Substrates: Nanomolar to Attomolar Level Sensing. Light Advanced Manufacturing, 2021, 2, 186.	2.2	20
83	Fabrication of three-dimensional microfluidic channels inside glass using nanosecond laser direct writing. Optics Express, 2012, 20, 4291.	1.7	19
84	Multilayered skyscraper microchips fabricated by hybrid "all-in-one―femtosecond laser processing. Microsystems and Nanoengineering, 2019, 5, 17.	3.4	19
85	Multiscale Hierarchical Micro/Nanostructures Created by Femtosecond Laser Ablation in Liquids for Polarization-Dependent Broadband Antireflection. Nanomaterials, 2020, 10, 1573.	1.9	19
86	Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation. Optics Express, 2013, 21, 15259.	1.7	18
87	Advances and opportunities of ultrafast laser synthesis and processing. MRS Bulletin, 2016, 41, 955-959.	1.7	18
88	Ultrafast Laser Fabrication of Functional Biochips: New Avenues for Exploring 3D Micro- and Nano-Environments. Micromachines, 2017, 8, 40.	1.4	18
89	Femtosecond Laser Direct Write Integration of Multi-Protein Patterns and 3D Microstructures into 3D Glass Microfluidic Devices. Applied Sciences (Switzerland), 2018, 8, 147.	1.3	18
90	Will GHz burst mode create a new path to femtosecond laser processing?. International Journal of Extreme Manufacturing, 2021, 3, 043001.	6.3	18

#	Article	IF	CITATIONS
91	Three-Dimensional Printing of Pure Proteinaceous Microstructures by Femtosecond Laser Multiphoton Cross-Linking. ACS Biomaterials Science and Engineering, 2020, 6, 1279-1287.	2.6	17
92	Nano-aquarium with microfluidic structures for dynamic analysis of Cryptomonas and Phormidium fabricated by femtosecond laser direct writing of photostructurable glass. Applied Surface Science, 2009, 255, 9893-9897.	3.1	16
93	Enhancement of resolution and quality of nano-hole structure onÂGaN substrates using the second-harmonic beam ofÂnear-infrared femtosecond laser. Applied Physics A: Materials Science and Processing, 2010, 101, 475-481.	1.1	16
94	Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass. Optics Express, 2012, 20, 28191.	1.7	16
95	Ultrafast laser manufacturing of nanofluidic systems. Nanophotonics, 2021, 10, 2389-2406.	2.9	16
96	Enhanced ablation efficiency for silicon by femtosecond laser microprocessing with GHz bursts in MHz bursts(BiBurst). International Journal of Extreme Manufacturing, 2022, 4, 015103.	6.3	16
97	â€~â€~All-in-One'' Chip Fabrication by 3D Femtosecond Laser Microprocessing for Biophotonics. Journal of Physics: Conference Series, 2007, 59, 533-538.	0.3	15
98	3D Biomimetic Chips for Cancer Cell Migration in Nanometer-Sized Spaces Using "Ship-in-a-Bottle― Femtosecond Laser Processing. ACS Applied Bio Materials, 2018, 1, 1667-1676.	2.3	15
99	Mimicking Intravasation–Extravasation with a 3D Glass Nanofluidic Model for the Chemotaxisâ€Free Migration of Cancer Cells in Confined Spaces. Advanced Materials Technologies, 2020, 5, 2000484.	3.0	15
100	3D Micromachining of Photosensitive Glass by Femtosecond Laser for Microreactor Manufacture. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2004, 17, 397-402.	0.1	14
101	Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications. SpringerBriefs in Applied Sciences and Technology, 2014, , .	0.2	14
102	Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator. Optics Communications, 2009, 282, 1370-1373.	1.0	12
103	High Repetition Rate UV versus VIS Picosecond Laser Fabrication of 3D Microfluidic Channels Embedded in Photosensitive Glass. Nanomaterials, 2018, 8, 583.	1.9	12
104	Threshold effect in femtosecond laser induced nanograting formation in glass: influence of the pulse duration. Applied Physics A: Materials Science and Processing, 2014, 114, 223-230.	1.1	11
105	Fabrication of a liquid crystal light modulator by use of femtosecond-laser-induced nanoripples. Optical Materials Express, 2013, 3, 1698.	1.6	8
106	Two Birds with One Stone: Spontaneous Size Separation and Growth Inhibition of Femtosecond Laser-Generated Surfactant-Free Metallic Nanoparticles via ex Situ SU-8 Functionalization. ACS Omega, 2018, 3, 10953-10966.	1.6	8
107	3D microfabrication in photosensitive glass by femtosecond laser. , 2003, , .		7
108	Improvement in laser-based micro-processing of carbon nanotube film devices. Applied Physics Express, 2022, 15, 026503.	1.1	7

#	Article	IF	CITATIONS
109	Magnetically driven rotary microfilter fabricated by two-photon polymerization for multimode filtering of particles. Optics Letters, 2021, 46, 2968.	1.7	6
110	Ultrafast Laser Processing of Glass Down to the Nano-Scale. Springer Series in Materials Science, 2010, , 279-293.	0.4	5
111	Three-dimensionally embedded indium tin oxide (ITO) films inÂphotosensitive glass: aÂtransparent and conductive platform forÂmicrodevices. Applied Physics A: Materials Science and Processing, 2011, 102, 265-269.	1.1	5
112	Tailored femtosecond Bessel beams for high-throughput, taper-free through-silicon vias (TSVs) fabrication. Proceedings of SPIE, 2016, , .	0.8	5
113	Picosecond Laser Processing of Photosensitive Glass for Generation of Biologically Relevant Microenvironments. Applied Sciences (Switzerland), 2020, 10, 8947.	1.3	5
114	Overview of Ultrafast Laser Processing. , 2013, , 1-36.		4
115	Femtosecond laser 3D nanofabrication in glass: enabling direct write of integrated micro/nanofluidic chips. , 2014, , .		4
116	Femtosecond laser-fabricated biochip for studying symbiosis between Phormidium and seedling root. Applied Physics B: Lasers and Optics, 2015, 119, 503-508.	1.1	4
117	Ship-in-a-bottle integration by hybrid femtosecond laser technology for fabrication of true 3D biochips. , 2015, , .		4
118	Fundamentals of Femtosecond Laser Processing. SpringerBriefs in Applied Sciences and Technology, 2014, , 19-33.	0.2	4
119	3D Fabrication of Embedded Microcomponents. Springer Series in Materials Science, 2010, , 215-238.	0.4	4
120	Ship-in-a-Bottle Biomicrochips Fabricated by Hybrid Femtosecond Laser Processing. MATEC Web of Conferences, 2013, 8, 05005.	0.1	3
121	Femtosecond laser fabricated electrofluidic devices in glass for 3D manipulation of biological samples. Proceedings of SPIE, 2016, , .	0.8	3
122	Micro and nano-biomimetic structures for cell migration study fabricated by hybrid subtractive and additive 3D femtosecond laser processing. Proceedings of SPIE, 2017, , .	0.8	3
123	Microfabrication of cellulose nanofiber-reinforced hydrogel by multiphoton polymerization. Scientific Reports, 2021, 11, 10892.	1.6	3
124	THREE-DIMENSIONAL MICRO AND NANOCHIPS FABRICATED BY FEMTOSEDOND LASER FOR BIOMEDICAL APPLICATIONS. , 2006, , 307-332.		3
125	Three-dimensional Femtosecond Laser Integration in Glasses. The Review of Laser Engineering, 2008, 36, 1206-1209.	0.0	3
126	Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS. Opto-Electronic Advances, 2022, 5, 210066-210066.	6.4	3

Koji Sugioka

#	Article	IF	CITATIONS
127	Femtosecond laser microfabrication of 3D structures in Foturan glass. , 2006, 6400, 640001.		2
128	Laser-induced damage in porous glass: a pathway to 3D fabrication of micro-/nanofluidics. Proceedings of SPIE, 2013, , .	0.8	2
129	Double-pulse irradiation of ultrafast laser for high-efficiency glass microwelding. , 2013, , .		2
130	Extraordinary characteristics of spatiotemporally focused laser pulses and their roles in precision materials processing. , 2015, , .		2
131	Current Techniques for Fabricating Microfluidic and Optofluidic Devices. SpringerBriefs in Applied Sciences and Technology, 2014, , 7-17.	0.2	1
132	Three-dimensional patterning in transparent materials with spatiotemporally focused femtosecond laser pulses. , 2014, , .		1
133	Spatiotemporal manipulation of ultrashort pulses for three-dimensional (3-D) laser processing in glass materials. , 2015, , 383-404.		1
134	Photofabrication. , 2018, , 51-82.		1
135	Femtosecond Laser Direct Writing for 3D Microfluidic Biochip Fabrication. Springer Series in Materials Science, 2020, , 247-272.	0.4	1
136	Multiscale Hierarchical Micro/Nanostructures Created by Femtosecond Laser Ablation in Liquids for Polarization-Dependent Broadband Antireflection. Nanomaterials, 2020, 10, 1573.	1.9	1
137	Microstructuring of Photosensitive Glass. Topics in Applied Physics, 2012, , 421-441.	0.4	1
138	Practical Applications of Ultrafast Laser Processing. IEEJ Transactions on Electronics, Information and Systems, 2015, 135, 1037-1042.	0.1	1
139	3D microstructuring of glass by femtosecond laser for lab-on-a-chip applications. , 2008, , .		0
140	Integration of electronics and photonics in active material by femtosecond laser for functional microdevice fabrication. , 2010, , .		0
141	Nanoaquarium: integrated microchips fabricated by ultrafast laser for understanding phenomena and functions of microorganisms. , 2011, , .		Ο
142	Spatio-temporal manipulation of femtosecond pulses for 3D micro/nano-fabrication. , 2011, , .		0
143	High-performance laser processing using manipulated ultrafast laser pulses. , 2012, , .		0
144	Monolithic integration of microelectric components and microfluidic structures in glass using femtosecond laser. , 2013, , .		0

#	Article	IF	CITATIONS
145	Investigation of physical mechanism of ultrafast laser glass microwelding using double-pulse irradiation. , 2013, , .		0
146	Fabrication of optical cavities with femtosecond laser pulses. Proceedings of SPIE, 2014, , .	0.8	0
147	Electrical manipulation of biological samples in glass-based electrofluidics fabricated by 3D femtosecond laser processing. Proceedings of SPIE, 2014, , .	0.8	0
148	Flexible metal patterning in glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating. , 2014, , .		0
149	Fabrication of Micro-optical Components in Glass. SpringerBriefs in Applied Sciences and Technology, 2014, , 57-73.	0.2	0
150	Applications of Biochips Fabricated by Femtosecond Lasers. SpringerBriefs in Applied Sciences and Technology, 2014, , 105-123.	0.2	0
151	High performance materials processing using tailored femtosecond laser pulses. , 2015, , .		0
152	Optics for material processing. Advanced Optical Technologies, 2016, 5, 15-16.	0.9	0
153	Fabrication of Optofluidic Devices by Femtosecond Laser. The Review of Laser Engineering, 2012, 40, 919.	0.0	0
154	Selective Metallization of Glass. SpringerBriefs in Applied Sciences and Technology, 2014, , 75-87.	0.2	0
155	Fabrication of Microfluidic Structures in Glass. SpringerBriefs in Applied Sciences and Technology, 2014, , 35-48.	0.2	0
156	Integration of Microcomponents. SpringerBriefs in Applied Sciences and Technology, 2014, , 89-103.	0.2	0
157	Ultrafast Laser Micro- and Nano-Processing of Glasses. Springer Series in Materials Science, 2014, , 359-380.	0.4	0
158	Nanoaquarium: Manipulation of bio-cells and worms in electrofluidics fabricated by hybrid femtosecond laser processing. , 2015, , .		0
159	Basic Optics and Diagnostics Apparatus for Ultrashort Pulse Laser Micro-/Nanoprocessing. , 2020, , 1-14.		0
160	Basic Optics and Diagnostics Apparatus for Ultrashort Pulse Laser Micro-/Nanoprocessing. , 2021, , 671-684.		0