Alexander Gutfraind

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3987337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling hepatitis C micro-elimination among people who inject drugs with direct-acting antivirals in metropolitan Chicago. PLoS ONE, 2022, 17, e0264983.	1.1	7
2	Effectiveness of isolation policies in schools: evidence from a mathematical model of influenza and COVID-19. PeerJ, 2021, 9, e11211.	0.9	6
3	Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems. European Journal of Operational Research, 2019, 276, 626-636.	3.5	18
4	Modeling indicates efficient vaccine-based interventions for the elimination of hepatitis C virus among persons who inject drugs in metropolitan Chicago. Vaccine, 2019, 37, 2608-2616.	1.7	11
5	Multi-Objective Model Exploration of Hepatitis C Elimination in an Agent-Based Model of People who Inject Drugs. , 2019, 2019, 1008-1019.		5
6	High-Risk Geographic Mobility Patterns among Young Urban and Suburban Persons who Inject Drugs and their Injection Network Members. Journal of Urban Health, 2018, 95, 71-82.	1.8	22
7	Integrating evidence, models and maps to enhance Chagas disease vector surveillance. PLoS Neglected Tropical Diseases, 2018, 12, e0006883.	1.3	12
8	Modeling of patient virus titers suggests that availability of a vaccine could reduce hepatitis C virus transmission among injecting drug users. Science Translational Medicine, 2018, 10, .	5.8	29
9	A graph database framework for covert network analysis: An application to the Islamic State network in Europe. Social Networks, 2017, 51, 178-188.	1.3	13
10	Operational resilience: concepts, design and analysis. Scientific Reports, 2016, 6, 19540.	1.6	183
11	Modeling a dynamic bi-layer contact network of injection drug users and the spread of blood-borne infections. Mathematical Biosciences, 2016, 273, 102-113.	0.9	13
12	Mathematical Modeling of Hepatitis C Prevalence Reduction with Antiviral Treatment Scale-Up in Persons Who Inject Drugs in Metropolitan Chicago. PLoS ONE, 2015, 10, e0135901.	1.1	30
13	Evaluating Large-scale Blood Transfusion Therapy for the Current Ebola Epidemic in Liberia. Journal of Infectious Diseases, 2015, 211, 1262-1267.	1.9	19
14	Efficacy and Optimization of Palivizumab Injection Regimens Against Respiratory Syncytial Virus Infection. JAMA Pediatrics, 2015, 169, 341.	3.3	39
15	Agent-Based Model Forecasts Aging of the Population of People Who Inject Drugs in Metropolitan Chicago and Changing Prevalence of Hepatitis C Infections. PLoS ONE, 2015, 10, e0137993.	1.1	22
16	Evader interdiction: algorithms, complexity and collateral damage. Annals of Operations Research, 2014, 222, 341-359.	2.6	4
17	Optimizing Network Topology for Cascade Resilience. Springer Optimization and Its Applications, 2012, , 37-59.	0.6	18
18	Evader Interdiction and Collateral Damage. Lecture Notes in Computer Science, 2012, , 86-100.	1.0	1

ALEXANDER GUTFRAIND

#	Article	IF	CITATIONS
19	Targeting by Transnational Terrorist Groups. Lecture Notes in Social Networks, 2011, , 9-32.	0.8	1
20	Optimizing Topological Cascade Resilience Based on the Structure of Terrorist Networks. PLoS ONE, 2010, 5, e13448.	1.1	29
21	Understanding Terrorist Organizations with a Dynamic Model. , 2009, , 107-125.		4
22	Understanding Terrorist Organizations with a Dynamic Model. Studies in Conflict and Terrorism, 2009, 32, 45-59.	0.8	23
23	Optimal Interdiction of Unreactive Markovian Evaders. Lecture Notes in Computer Science, 2009, , 102-116.	1.0	11
24	Error-reducing Structure of the Genetic Code Indicates Code Origin in Non-thermophile Organisms. Origins of Life and Evolution of Biospheres, 2008, 38, 75-85.	0.8	9
25	How Do Terrorist Cells Self-Assemble: Insights from an Agent-Based Model of Radicalization. SSRN Electronic Journal, 0, , .	0.4	14
26	Interdiction of a Markovian Evader. , 0, , .		5