Heng Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3986939/publications.pdf

Version: 2024-02-01

201674 149698 56 3,864 63 27 h-index citations g-index papers 64 64 64 2113 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Frame-independent vector-cloud neural network for nonlocal constitutive modeling on arbitrary grids. Computer Methods in Applied Mechanics and Engineering, 2022, 388, 114211.	6.6	12
2	Acoustic Inversion for Uncertainty Reduction in Reynolds-Averaged Navier–Stokes-Based Jet Noise Prediction. AlAA Journal, 2022, 60, 2407-2422.	2.6	3
3	Neural network–based pore flow field prediction in porous media using super resolution. Physical Review Fluids, 2022, 7, .	2.5	13
4	Physics-informed machine learning: case studies for weather and climate modelling. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200093.	3.4	167
5	End-to-end differentiable learning of turbulence models from indirect observations. Theoretical and Applied Mechanics Letters, 2021, 11, 100280.	2.8	13
6	Assimilation of disparate data for enhanced reconstruction of turbulent mean flows. Computers and Fluids, 2021, 224, 104962.	2.5	17
7	Learning nonlocal constitutive models with neural networks. Computer Methods in Applied Mechanics and Engineering, 2021, 384, 113927.	6.6	20
8	Recurrent neural network for end-to-end modeling of laminar-turbulent transition. Data-Centric Engineering, 2021, 2, .	2.3	13
9	Toward Transition Modeling in a Hypersonic Boundary Layer at Flight Conditions. , 2020, , .		1
10	Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations. Computers and Fluids, 2020, 200, 104431.	2.5	67
11	Enforcing statistical constraints in generative adversarial networks for modeling chaotic dynamical systems. Journal of Computational Physics, 2020, 406, 109209.	3.8	77
12	Toward a Practical Method for Hypersonic Transition Prediction Based on Stability Correlations. AIAA Journal, 2020, 58, 4475-4484.	2.6	16
13	Enforcing boundary conditions on physical fields in Bayesian inversion. Computer Methods in Applied Mechanics and Engineering, 2020, 367, 113097.	6.6	4
14	Regularized ensemble Kalman methods for inverse problems. Journal of Computational Physics, 2020, 416, 109517.	3.8	29
15	Evaluation of ensemble methods for quantifying uncertainties in steady-state CFD applications with small ensemble sizes. Computers and Fluids, 2020, 203, 104530.	2.5	15
16	Convolutional neural network for transition modeling based on linear stability theory. Physical Review Fluids, 2020, 5, .	2.5	20
17	Physics-informed covariance kernel for model-form uncertainty quantification with application to turbulent flows. Computers and Fluids, 2019, 193, 104292.	2.5	12
18	Quantification of model uncertainty in RANS simulations: A review. Progress in Aerospace Sciences, 2019, 108, 1-31.	12.1	228

#	Article	IF	CITATIONS
19	Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned. Journal of Fluid Mechanics, 2019, 869, 553-586.	3.4	109
20	Recent progress in augmenting turbulence models with physics-informed machine learning. Journal of Hydrodynamics, 2019, 31, 1153-1158.	3.2	23
21	Turbulence Modeling in the Age of Data. Annual Review of Fluid Mechanics, 2019, 51, 357-377.	25.0	755
22	Prediction of Reynolds stresses in high-Mach-number turbulent boundary layers using physics-informed machine learning. Theoretical and Computational Fluid Dynamics, 2019, 33, 1-19.	2.2	33
23	Representation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling. Computer Methods in Applied Mechanics and Engineering, 2019, 346, 707-726.	6.6	31
24	Predictive large-eddy-simulation wall modeling via physics-informed neural networks. Physical Review Fluids, 2019, 4, .	2.5	149
25	Inferring tsunami flow depth and flow speed from sediment deposits based on Ensemble Kalman Filtering. Geophysical Journal International, 2018, 212, 646-658.	2.4	5
26	TSUFLIND-EnKF: Inversion of tsunami flow depth and flow speed from deposits with quantified uncertainties. Marine Geology, 2018, 396, 16-25.	2.1	13
27	Propagation of Input Uncertainty in Presence of Model-Form Uncertainty: A Multifidelity Approach for Computational Fluid Dynamics Applications. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2018, 4, .	1.1	8
28	Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations. Advances in Water Resources, 2018, 111, 406-422.	3.8	31
29	Seeing permeability from images: fast prediction with convolutional neural networks. Science Bulletin, 2018, 63, 1215-1222.	9.0	125
30	Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework. Physical Review Fluids, $2018, 3, .$	2.5	309
31	Visualization of High Dimensional Turbulence Simulation Data using t-SNE. , 2017, , .		20
32	High-Mach-Number Turbulence Modeling using Machine Learning and Direct Numerical Simulation Database. , $2017, \dots$		3
33	A Physics-Informed Machine Learning Approach of Improving RANS Predicted Reynolds Stresses. , 2017, ,		6
34	Realistic representation of grain shapes in CFD–DEM simulations of sediment transport with a bonded-sphere approach. Advances in Water Resources, 2017, 107, 421-438.	3.8	24
35	An Implicitly Consistent Formulation of a Dual-Mesh Hybrid LES/RANS Method. Communications in Computational Physics, 2017, 21, 570-599.	1.7	11
36	A Priori Assessment of Prediction Confidence for Data-Driven Turbulence Modeling. Flow, Turbulence and Combustion, 2017, 99, 25-46.	2.6	51

#	Article	IF	Citations
37	A random matrix approach for quantifying model-form uncertainties in turbulence modeling. Computer Methods in Applied Mechanics and Engineering, 2017, 313, 941-965.	6.6	29
38	Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Physical Review Fluids, 2017, 2, .	2.5	403
39	Data-driven CFD modeling of turbulent flows through complex structures. International Journal of Heat and Fluid Flow, 2016, 62, 138-149.	2.4	25
40	CFD–DEM simulations of current-induced dune formation and morphological evolution. Advances in Water Resources, 2016, 92, 228-239.	3.8	47
41	Quantification of uncertainties in turbulence modeling: A comparison of physics-based and random matrix theoretic approaches. International Journal of Heat and Fluid Flow, 2016, 62, 577-592.	2.4	10
42	Sediment micromechanics in sheet flows induced by asymmetric waves: A CFD–DEM study. Computers and Geosciences, 2016, 96, 35-46.	4.2	5
43	Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach. Journal of Computational Physics, 2016, 324, 115-136.	3.8	209
44	A Bayesian Calibration–Prediction Method for Reducing Model-Form Uncertainties with Application in RANS Simulations. Flow, Turbulence and Combustion, 2016, 97, 761-786.	2.6	42
45	SediFoam: A general-purpose, open-source CFD–DEM solver for particle-laden flow with emphasis on sediment transport. Computers and Geosciences, 2016, 89, 207-219.	4.2	112
46	INCORPORATING PRIOR KNOWLEDGE FOR QUANTIFYING AND REDUCING MODEL-FORM UNCERTAINTY IN RANS SIMULATIONS. , 2016, 6, 109-126.		9
47	Diffusion-based coarse graining in hybrid continuum–discrete solvers: Applications in CFD–DEM. International Journal of Multiphase Flow, 2015, 72, 233-247.	3.4	69
48	Diffusion-based coarse graining in hybrid continuum–discrete solvers: Theoretical formulation and a priori tests. International Journal of Multiphase Flow, 2015, 77, 142-157.	3.4	93
49	Analysis of four-dimensional Mie imaging using fiber-based endoscopes. Applied Optics, 2014, 53, 6389.	1.8	19
50	Dynamic Evaluation of Mesh Resolution and Its Application in Hybrid LES/RANS Methods. Flow, Turbulence and Combustion, 2014, 93, 141-170.	2.6	9
51	Coupling of solvers with non-conforming computational domains in a dual-mesh hybrid LES/RANS framework. Computers and Fluids, 2013, 88, 653-662.	2.5	5
52	Preliminary Evaluation and Applications of a Consistent Hybrid LES/RANS Method. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2012, , 91-100.	0.3	2
53	A consistent dual-mesh framework for hybrid LES/RANS modeling. Journal of Computational Physics, 2012, 231, 1848-1865.	3.8	50
54	Algorithms in a Robust Hybrid CFD-DEM Solver for Particle-Laden Flows. Communications in Computational Physics, 2011, 9, 297-323.	1.7	81

#	Article	IF	CITATION
55	Hydro- and morpho-dynamic modeling of breaking solitary waves over a fine sand beach. Part II: Numerical simulation. Marine Geology, 2010, 269, 119-131.	2.1	46
56	Scaling of transient wave–soil interaction problems. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34, 839-858.	3.3	1
57	Timeâ€scale analysis in unsaturated porous media under external wave loads. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34, 1935-1959.	3.3	3
58	Hydro- and morpho-dynamic modeling of breaking solitary waves over a fine sand beach. Part I: Experimental study. Marine Geology, 2010, 269, 107-118.	2.1	50
59	Parametric study of breaking solitary wave induced liquefaction of coastal sandyslopes. Ocean Engineering, 2010, 37, 1546-1553.	4.3	18
60	Liquefaction potential of coastal slopes induced by solitary waves. Acta Geotechnica, 2009, 4, 17-34.	5.7	49
61	Numerical study of segregation using multiscale models. International Journal of Computational Fluid Dynamics, 2009, 23, 81-92.	1.2	20
62	Dynamic Interactions Between the Vadose and Phreatic Zones During Breaking Solitary Wave Runup and Drawdown Over a Fine Sand Beach., 2009,,.		0
63	Assessment of Regularized Ensemble Kalman Method for Inversion of Turbulence Quantity Fields. AIAA Journal, 0, , 1-11.	2.6	1