Bruce McCune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/398669/publications.pdf Version: 2024-02-01

RRUCE MCCUNE

#	Article	IF	CITATIONS
1	Climate and epiphytic macrolichen communities in the Four Corners region of the U.S.A Bryologist, 2022, 125, .	0.1	5
2	Two new hairy Leptogium (Collemataceae) species from western North America. Bryologist, 2022, 125, .	0.1	0
3	A new endemic, Pannaria oregonensis, replaces two misapplied names in the Pacific Northwest of North America. Bryologist, 2022, 125, .	0.1	1
4	Two new species, Hypogymnia tuckerae and H. discopruina (Parmeliaceae), from North America and China. Bryologist, 2022, 125, .	0.1	1
5	Sinuicella denisonii, a new genus and species in the Peltigeraceae from western North America. Lichenologist, 2021, 53, 185-192.	0.5	1
6	Tephromela eviolacea, a new species of Tephromela (Tephromelataceae) lacking a violet hymenium from northwestern North America. Bryologist, 2021, 124, .	0.1	0
7	Erosion of tropical bird diversity over a century is influenced by abundance, diet and subtle climatic tolerances. Scientific Reports, 2021, 11, 10045.	1.6	14
8	Climatic niche limits and communityâ€level vulnerability of obligate symbioses. Journal of Biogeography, 2020, 47, 382-395.	1.4	15
9	The weight of the crust: Biomass of crustose lichens in tropical dry forest represents more than half of foliar biomass. Biotropica, 2020, 52, 1298-1308.	0.8	8
10	Two closely related but morphologically disparate new species of Physcia from western North America. Bryologist, 2020, 123, 204.	0.1	3
11	Gregorella, a Cyanobacterial Pioneer on Soil, New to North America. Evansia, 2020, 37, 15.	0.1	2
12	Pseudocyphellaria holarctica (Lobariaceae) specimens from Oregon are referable to P. hawaiiensis. Bryologist, 2020, 123, 260.	0.1	0
13	Epigloea diversispora, a new possibly lichenized ascomycete from Oregon, with a key to the World species. Bryologist, 2020, 123, .	0.1	0
14	Parallel Miocene dispersal events explain the cosmopolitan distribution of the Hypogymnioid lichens. Journal of Biogeography, 2019, 46, 945-955.	1.4	6
15	Five new crustose Stereocaulon species in western North America. Bryologist, 2019, 122, 197.	0.1	7
16	Novel climates reverse carbon uptake of atmospherically dependent epiphytes: Climatic constraints on the iconic boreal forest lichen <i>Evernia mesomorpha</i> . American Journal of Botany, 2018, 105, 266-274.	0.8	17
17	New taxa and a case of ephemeral spore production in Lecideaceae from western North America. Bryologist, 2017, 120, 114-123.	0.1	1
18	Physconia labrata, a new species from western North America and Asia. Bryologist, 2017, 120, 427-434.	0.1	2

BRUCE MCCUNE

#	Article	IF	CITATIONS
19	Ochrolechia brodoi, a New Lichen for North America from Alaska, with Updates to the Key of Corticolous North American Species. Evansia, 2017, 34, 110-113.	0.1	3
20	Sensitivity of carbon stores in boreal forest moss mats - effects of vegetation, topography and climate. Plant and Soil, 2017, 421, 31-42.	1.8	11
21	<i>Lambiella arenosa</i> , a new species from the coastal Oregon dunes. Bryologist, 2017, 120, 329-334.	0.1	2
22	New taxa and a case of ephemeral spore production in Lecideaceae from western North America. Bryologist, 2017, 120, 115.	0.1	5
23	Pseudocyphellaria crocata (Ascomycota: Lobariaceae) in the Americas is revealed to be thirteen species, and none of them is P. crocata. Bryologist, 2017, 120, 441.	0.1	22
24	Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem. PLoS ONE, 2016, 11, e0147826.	1.1	44
25	Limitations of Species Delimitation Based on Phylogenetic Analyses: A Case Study in the Hypogymnia hypotrypa Group (Parmeliaceae, Ascomycota). PLoS ONE, 2016, 11, e0163664.	1.1	13
26	Rhizocarpon quinonum, a new anthraquinone-containing species from the Alaska Peninsula. Lichenologist, 2016, 48, 367-375.	0.5	2
27	Evolution of complex symbiotic relationships in a morphologically derived family of lichenâ€forming fungi. New Phytologist, 2015, 208, 1217-1226.	3.5	105
28	Nonâ€parametric methods reveal nonâ€linear functional trait variation of lichens along environmental and fire age gradients. Journal of Vegetation Science, 2015, 26, 848-865.	1.1	40
29	Origin of the dust bunny distribution in ecological community data. Plant Ecology, 2015, 216, 645-656.	0.7	8
30	<i>Hypogymnia papilliformis</i> (<i>Parmeliaceae</i>), a new lichen from Far East Russia and China. Lichenologist, 2015, 47, 117-122.	0.5	1
31	Response of the nitrogen-fixing lichenLobaria pulmonariato phosphorus, molybdenum, and vanadium. Ecosphere, 2015, 6, art155.	1.0	16
32	Lichen traits and species as indicators of vegetation and environment. Bryologist, 2015, 118, 252.	0.1	23
33	Lichen communities and species indicate climate thresholds in southeast and south-central Alaska, USA. Bryologist, 2014, 117, 241.	0.1	39
34	A new chemical spot test for miriquidic acid. Lichenologist, 2013, 45, 697-699.	0.5	1
35	Geographic, climatic, and chemical differentiation in the Hypogymnia imshaugii species complex (Lecanoromycetes, Parmeliaceae) in North America. Bryologist, 2011, 114, 526.	0.1	8
36	Hypogymnia phylogeny, including Cavernularia, reveals biogeographic structure. Bryologist, 2011, 114, 392.	0.1	27

BRUCE MCCUNE

#	Article	IF	CITATIONS
37	A single phosphorus treatment doubles growth of cyanobacterial lichen transplants. Ecology, 2009, 90, 567-570.	1.5	43
38	Spatial scale of GISâ€derived categorical variables affects their ability to separate sites by community composition. Applied Vegetation Science, 2008, 11, 421-430.	0.9	7
39	Using Epiphytic Macrolichen Communities for Biomonitoring Ammonia in Forests of the Greater Sierra Nevada, California. Water, Air, and Soil Pollution, 2006, 170, 69-93.	1.1	44
40	Defining a Successional Metric for Lichen Communities in the Arctic Tundra. Arctic, Antarctic, and Alpine Research, 2006, 38, 373-377.	0.4	7
41	AIR-QUALITY BIOINDICATION IN THE GREATER CENTRAL VALLEY OF CALIFORNIA, WITH EPIPHYTIC MACROLICHEN COMMUNITIES. , 2005, 15, 1712-1726.		64
42	USE OF A SMOOTHER TO FORECAST OCCURRENCE OF EPIPHYTIC LICHENS UNDER ALTERNATIVE FOREST MANAGEMENT PLANS. , 2003, 13, 1110-1123.		27
43	DISPERSAL LIMITATIONS OF EPIPHYTIC LICHENS RESULT IN SPECIES DEPENDENT ON OLD-GROWTH FORESTS. , 2000, 10, 789-799.		258
44	REMNANT TREES AND CANOPY LICHEN COMMUNITIES IN WESTERN OREGON: A RETROSPECTIVE APPROACH. , 1997, 7, 1181-1187.		101
45	INFLUENCE OF NOISY ENVIRONMENTAL DATA ON CANONICAL CORRESPONDENCE ANALYSIS. Ecology, 1997, 78, 2617-2623.	1.5	202
46	Hotspots of Epiphytic Lichen Diversity in Two Young Managed Forests. Sitios Criticos de Diversidad de Liquenes Epifitos en Dos Bosques Jovenes Bajo Manejo. Conservation Biology, 1997, 11, 172-182.	2.4	157
47	Consumption and Decomposition of Lichen Litter in a Temperate Coniferous Rainforest. Lichenologist, 1994, 26, 67-71.	0.5	13
48	Consumption and Decomposition of Lichen Litter in a Temperate Coniferous Rainforest. Lichenologist, 1994, 26, 67.	0.5	22
49	Improving community analysis with the Beals smoothing function. Ecoscience, 1994, 1, 82-86.	0.6	75
50	Components of error in predictions of species compositional change. Journal of Vegetation Science, 1992, 3, 27-34.	1.1	18