Hui Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3986542/publications.pdf Version: 2024-02-01

Ниг Ми

#	Article	IF	CITATIONS
1	The Wet–Dry Cycling Corrosion Behavior of Low-Carbon Medium Manganese Steel Exposed to a 3.5% NaCl Solution Environment. Journal of Materials Engineering and Performance, 2022, 31, 7856-7869.	1.2	3
2	Fabrication of TiC-graphene dual-reinforced self-lubricating Al matrix hybrid nanocomposites with superior mechanical and tribological properties. Tribology International, 2022, 171, 107535.	3.0	14
3	Effects of Quenching and Tempering Heat Treatment Processing on the Microstructure and Properties of High-Strength Hull Steel. Metals, 2022, 12, 914.	1.0	3
4	Optimisation of sintering parameters for bonding nanocrystalline cemented tungsten carbide powder and solid high strength steel. Composite Interfaces, 2021, 28, 477-492.	1.3	3
5	Comparison of a laboratory-scale coke and a pilot-scale coke from matched coal. Ironmaking and Steelmaking, 2021, 48, 514-526.	1.1	2
6	Roughness-dependent tribological characteristics of water-based GO suspensions with ZrO2 and TiO2 nanoparticles as additives. Tribology International, 2021, 161, 107073.	3.0	16
7	Study on size effects in micro deep drawing of stainless steel foil. Journal of Physics: Conference Series, 2021, 2020, 012040.	0.3	0
8	A Comprehensive Review of Water-Based Nanolubricants. Lubricants, 2021, 9, 89.	1.2	29
9	Synergistic effects of TiC and graphene on the microstructure and tribological properties of Al2024 matrix composites. Advanced Powder Technology, 2021, 32, 3635-3649.	2.0	21
10	Water-based nanosuspensions: Formulation, tribological property, lubrication mechanism, and applications. Journal of Manufacturing Processes, 2021, 71, 625-644.	2.8	39
11	Influence of hot compressive parameters on flow behaviour and microstructure evolution in a commercial medium carbon micro-alloyed spring steel. Journal of Manufacturing Processes, 2020, 58, 1171-1181.	2.8	17
12	Eco-Friendly Water-Based Nanolubricants for Industrial-Scale Hot Steel Rolling. Lubricants, 2020, 8, 96.	1.2	18
13	Microstructural evaluation of WC and steel dissimilar bilayered composite obtained by spark plasma sintering. International Journal of Advanced Manufacturing Technology, 2020, 111, 2405-2418.	1.5	5
14	Understanding the role of water-based nanolubricants in micro flexible rolling of aluminium. Tribology International, 2020, 151, 106378.	3.0	27
15	Novel water-based nanolubricant with superior tribological performance in hot steel rolling. International Journal of Extreme Manufacturing, 2020, 2, 025002.	6.3	24
16	Frictional Size Effect of Light-Weight Mg–Li Alloy in Micro Deep Drawing under Nano-Particle Lubrication Condition. Materials Transactions, 2020, 61, 239-243.	0.4	5
17	Oxidation Behaviour of Steel During hot Rolling by Using TiO2-Containing Water-Based Nanolubricant. Oxidation of Metals, 2019, 92, 315-335.	1.0	9
18	Influences of Load and Microstructure on Tribocorrosion Behaviour of High Strength Hull Steel in Saline Solution. Tribology Letters, 2019, 67, 1.	1.2	8

Hui Wu

#	Article	IF	CITATIONS
19	Effects of nano-particle lubrication on micro deep drawing of Mg-Li alloy. International Journal of Advanced Manufacturing Technology, 2019, 104, 4409-4419.	1.5	15
20	Effects of Holding Time on the Sintering of Cemented Tungsten Carbide Powder and Bonding with High-Strength Steel Wire. Journal of Materials Engineering and Performance, 2019, 28, 4074-4085.	1.2	13
21	Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures. Wear, 2019, 426-427, 792-804.	1.5	32
22	Experimental investigation on the mechanical and tribological coupled behaviour of bimetal composite under different states. Surface Topography: Metrology and Properties, 2019, 7, 025015.	0.9	7
23	Adhesion, friction and wear analysis of a chromium oxide scale on a ferritic stainless steel. Wear, 2019, 426-427, 1212-1221.	1.5	14
24	Graphene encapsulated SiC nanoparticles as tribology-favoured nanofillers in aluminium composite. Composites Part B: Engineering, 2019, 162, 445-453.	5.9	46
25	Effect of graphene on the tribolayer of aluminum matrix composite during dry sliding wear. Surface and Coatings Technology, 2019, 358, 907-912.	2.2	38
26	Analysis of oil-in-water based nanolubricants with varying mass fractions of oil and TiO 2 nanoparticles. Wear, 2018, 396-397, 162-171.	1.5	45
27	Friction and wear characteristics of TiO 2 nano-additive water-based lubricant on ferritic stainless steel. Tribology International, 2018, 117, 24-38.	3.0	126
28	Tribological Testing of Metallurgical Coke: Coefficient of Friction and Relation to Coal Properties. Energy & Fuels, 2018, 32, 12021-12029.	2.5	8
29	Estimating coke fracture toughness using acoustic emissions and changes in coefficient of friction during scratch testing. Fuel, 2018, 226, 564-572.	3.4	7
30	Effects of oil-in-water based nanolubricant containing TiO2 nanoparticles in hot rolling of 304 stainless steel. Journal of Materials Processing Technology, 2018, 262, 149-156.	3.1	36
31	Performance Evaluation and Lubrication Mechanism of Water-Based Nanolubricants Containing Nano-TiO2 in Hot Steel Rolling. Lubricants, 2018, 6, 57.	1.2	26
32	Effects of Nano-TiO ₂ Additive in Oil-in-Water Lubricant on Contact Angle and Antiscratch Behavior. Tribology Transactions, 2017, 60, 362-372.	1.1	22
33	A study of the tribological behaviour of TiO2 nano-additive water-based lubricants. Tribology International, 2017, 109, 398-408.	3.0	180
34	Tribological Performance and Lubrication Mechanism of Alumina Nanoparticle Water-Based Suspensions in Ball-on-Three-Plate Testing. Tribology Letters, 2017, 65, 1.	1.2	56
35	Effects of oil-in-water based nanolubricant containing TiO2 nanoparticles on the tribological behaviour of oxidised high-speed steel. Tribology International, 2017, 110, 77-85.	3.0	38
36	Analysis of TiO 2 nano-additive water-based lubricants in hot rolling of microalloyed steel. Journal of Manufacturing Processes, 2017, 27, 26-36.	2.8	63

Hui Wu

#	Article	IF	CITATIONS
37	Effects of surface preparation on tribological behaviour of a ferritic stainless steel in hot rolling. Wear, 2017, 376-377, 1804-1813.	1.5	9
38	Study on growth behaviour of oxide scale and its effects on tribological property of nano-TiO 2 additive oil-in-water lubricant. Wear, 2017, 376-377, 792-802.	1.5	19
39	Wear and friction behaviour of high-speed steel and indefinite chill material for rolling ferritic stainless steels. Wear, 2017, 376-377, 1580-1585.	1.5	28
40	Effects of oil-in-water based nanolubricant containing TiO 2 nanoparticles in hot rolling of 304 stainless steel. Procedia Engineering, 2017, 207, 1385-1390.	1.2	7
41	Influence of Cr-Rich Oxide Scale on Sliding Wear Mechanism of Ferritic Stainless Steel at High Temperature. Tribology Letters, 2016, 63, 1.	1.2	16
42	Study on Tribological Property of Nano-TiO ₂ Additive Oil-in-Water Lubricant during Hot Rolling. Materials Science Forum, 2016, 874, 381-386.	0.3	2
43	A Novel Nano-TiO ₂ Additive Oil-in-Water Lubricant for Hot Steel Rolling. Materials Science Forum, 2016, 861, 201-206.	0.3	5
44	Yielding behavior and strengthening mechanisms of a high strength ultrafineâ€grained Crâ€Mnâ€Niâ€N stainless steel. Steel Research International, 0, , 2100524.	1.0	3
45	The Effect of Hysteresis Loss on Magnetic Entropy Change in Highly Textured Mn-Ni–Sn Melt-Spun Ribbons. Journal of Superconductivity and Novel Magnetism, 0, , 1.	0.8	0