Roman Lesyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3986294/publications.pdf

Version: 2024-02-01

		101496	128225	
178	4,404	36	60	
papers	citations	h-index	g-index	
195	195	195	3812	
173	155	173	3012	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. European Journal of Medicinal Chemistry, 2009, 44, 1396-1404.	2.6	247
2	4-Thiazolidones: Centenarian History, Current Status and Perspectives for Modern Organic and Medicinal Chemistry. Current Organic Chemistry, 2004, 8, 1547-1577.	0.9	223
3	Synthesis of New 4-Thiazolidinone-, Pyrazoline-, and Isatin-Based Conjugates with Promising Antitumor Activity. Journal of Medicinal Chemistry, 2012, 55, 8630-8641.	2.9	195
4	Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. European Journal of Medicinal Chemistry, 2010, 45, 5012-5021.	2.6	191
5	New 5-substituted thiazolo[3,2-b][1,2,4]triazol-6-ones: Synthesis and anticancer evaluation. European Journal of Medicinal Chemistry, 2007, 42, 641-648.	2.6	137
6	Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids. European Journal of Medicinal Chemistry, 2016, 113, 145-166.	2.6	129
7	5-Ene-4-thiazolidinones – An efficient tool in medicinal chemistry. European Journal of Medicinal Chemistry, 2017, 140, 542-594.	2.6	129
8	3D-MoRSE descriptors explained. Journal of Molecular Graphics and Modelling, 2014, 54, 194-203.	1.3	121
9	Synthesis and Anticancer Activity of Isatinâ€Based Pyrazolines and Thiazolidines Conjugates. Archiv Der Pharmazie, 2011, 344, 514-522.	2.1	91
10	Anticancer thiopyrano [2,3-d] [1,3] thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies. Bioorganic and Medicinal Chemistry, 2006, 14, 5230-5240.	1.4	90
11	Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives. European Journal of Medicinal Chemistry, 2009, 44, 3627-3636.	2.6	88
12	Recent developments with rhodanine as a scaffold for drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 1233-1252.	2.5	87
13	Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anticancer activity. Bioorganic and Medicinal Chemistry, 2010, 18, 5090-5102.	1.4	85
14	Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. European Journal of Medicinal Chemistry, 2013, 66, 228-237.	2.6	85
15	Manganic encephalopathy due to "ephedrone―abuse. Movement Disorders, 2007, 22, 1337-1343.	2.2	72
16	Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group. Biopolymers and Cell, 2011, 27, 107-117.	0.1	72
17	A Facile Synthesis and Anticancer Activity Evaluation of Spiro[Thiazolidinone-Isatin] Conjugates. Scientia Pharmaceutica, 2011, 79, 763-777.	0.7	66
18	5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. European Journal of Medicinal Chemistry, 2016, 117, 33-46.	2.6	61

#	Article	IF	CITATIONS
19	Synthesis of some N-substituted nitroimidazole derivatives as potential antioxidant and antifungal agents. European Journal of Medicinal Chemistry, 2009, 44, 645-652.	2.6	58
20	Study of novel anticancer 4-thiazolidinone derivatives. Chemico-Biological Interactions, 2017, 262, 46-56.	1.7	58
21	A new domino-Knoevenagel–hetero-Diels–Alder reaction. Tetrahedron Letters, 2008, 49, 4648-4651.	0.7	57
22	Synthesis of new potential anticancer agents based on 4-thiazolidinone and oleanane scaffolds. Medicinal Chemistry Research, 2012, 21, 3568-3580.	1.1	54
23	Synthesis and antitrypanosomal activity of new 6,6,7-trisubstituted thiopyrano[2,3-d][1,3]thiazoles. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7071-7074.	1.0	51
24	Thiazole-Bearing 4-Thiazolidinones as New Anticonvulsant Agents. Scientia Pharmaceutica, 2020, 88, 16.	0.7	50
25	Synthesis of pyrazoline–thiazolidinone hybrids with trypanocidal activity. European Journal of Medicinal Chemistry, 2014, 85, 245-254.	2.6	49
26	Antifibrotic and anticancer action of 5-ene amino/iminothiazolidinones. European Journal of Medicinal Chemistry, 2016, 112, 180-195.	2.6	47
27	Synthesis and Anticancer and Antiviral Activities of New 2â€Pyrazolineâ€Substituted 4â€Thiazolidinones. Journal of Heterocyclic Chemistry, 2013, 50, E55.	1.4	46
28	Thiazolidinone/thiazole based hybrids – New class of antitrypanosomal agents. European Journal of Medicinal Chemistry, 2019, 174, 292-308.	2.6	44
29	Synthesis and Anticancer Activity of Novel Nonfused Bicyclic Thiazolidinone Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 638-650.	0.8	41
30	Synthesis and anticancer activity of novel thiopyrano [2,3- <i>d</i>) thiazole-based compounds containing norbornane moiety. Journal of Sulfur Chemistry, 2008, 29, 151-162.	1.0	40
31	Trends in research of antitrypanosomal agents among synthetic heterocycles. European Journal of Medicinal Chemistry, 2014, 85, 51-64.	2.6	40
32	Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ). European Journal of Medicinal Chemistry, 2017, 141, 162-168.	2.6	40
33	Synthesis and Anticancer Activity of New Thiopyrano[2,3-d]thiazoles Based on Cinnamic Acid Amides. Scientia Pharmaceutica, 2014, 82, 723-733.	0.7	39
34	Changes in Energy Consumption, Economic Growth and Aspirations for Energy Independence: Sectoral Analysis of Uses of Natural Gas in Ukrainian Economy. Energies, 2019, 12, 4724.	1.6	39
35	Synthesis of 5-enamine-4-thiazolidinone derivatives with trypanocidal and anticancer activity. Bioorganic Chemistry, 2019, 86, 126-136.	2.0	38
36	Fused Thiopyrano [2,3-d] thiazole Derivatives as Potential Anticancer Agents. Scientia Pharmaceutica, 2012, 80, 509-529.	0.7	37

#	Article	IF	Citations
37	Isothiocoumarin-3-carboxylic acid derivatives: Synthesis, anticancer and antitrypanosomal activity evaluation. European Journal of Medicinal Chemistry, 2014, 75, 57-66.	2.6	37
38	Autophagy Modulators in Cancer Therapy. International Journal of Molecular Sciences, 2021, 22, 5804.	1.8	37
39	Synthesis and Biological Activity of New Thiopyrano[2,3-d]thiazoles Containing a Naphthoquinone Moiety. Scientia Pharmaceutica, 2013, 81, 423-436.	0.7	36
40	Evaluation of the Adaptability of the Ukrainian Economy to Changes in Prices for Energy Carriers and to Energy Market Risks. Energies, 2018, 11, 3529.	1.6	35
41	Synthesis of fused thiopyrano[2,3-d][1,3]thiazoles via hetero-Diels–Alder reaction related tandem and domino processes. Tetrahedron, 2015, 71, 9501-9508.	1.0	34
42	Biologically Active 4-Thiazolidinones: A Review of QSAR Studies and QSAR Modeling of Antitumor Activity. Current Topics in Medicinal Chemistry, 2013, 12, 2763-2784.	1.0	34
43	Thiopyrano[2,3-d]Thiazoles as New Efficient Scaffolds in Medicinal Chemistry. Scientia Pharmaceutica, 2018, 86, 26.	0.7	33
44	Synthesis and antimicrobial activity of 2,4-dioxothiazolidine-5-acetic acid amides. Pharmaceutical Chemistry Journal, 2006, 40, 303-306.	0.3	32
45	Crotonic, cynnamic, and propiolic acids motifs in the synthesis of thiopyrano[2,3-d][1,3]thiazoles via hetero-Diels–Alder reaction and related tandem processes. Tetrahedron, 2014, 70, 720-729.	1.0	29
46	5-Ethoxymethylidene-4-thioxo-2-thiazolidinone as Versatile Building Block for Novel Biorelevant Small Molecules with Thiopyrano $[2,3-\langle i\rangle d\langle i\rangle][1,3]$ thiazole Core. Synthetic Communications, 2014, 44, 237-244.	1.1	28
47	Microcredits for Sustainable Development of Small Ukrainian Enterprises: Efficiency, Accessibility, and Government Contribution. Sustainability, 2020, 12, 6184.	1.6	28
48	Bradykinin antagonists and thiazolidinone derivatives as new potential anti-cancer compounds. Bioorganic and Medicinal Chemistry, 2014, 22, 3815-3823.	1.4	27
49	Synthesis, anticancer and antiviral activities of novel thiopyrano[2,3- <i>d</i>)Ithiazole-6-carbaldehydes. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1245-1249.	0.8	26
50	An efficient method for the transformation of 5-ylidenerhodanines into 2,3,5-trisubstituted-4-thiazolidinones. Tetrahedron Letters, 2012, 53, 557-559.	0.7	25
51	Assessment of the Technological Changes Impact on the Sustainability of State Security System of Ukraine. Sustainability, 2018, 10, 1186.	1.6	25
52	Synthesis and cytotoxicity of new thiazolo [4,5-b] pyridine-2(3H)-one derivatives based on $\hat{l}_{\pm},\hat{l}^{2}$ -unsaturated ketones and \hat{l}_{\pm} -ketoacids. Chemical Papers, 2018, 72, 669-681.	1.0	24
53	Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives. Biopolymers and Cell, 2010, 26, 136-145.	0.1	23
54	Synthesis and anticancer activity of 6-heteroarylcoumarins. European Journal of Medicinal Chemistry, 2015, 105, 171-181.	2.6	23

#	Article	IF	CITATIONS
55	Putative anticancer potential of novel 4-thiazolidinone derivatives: cytotoxicity toward rat C6 glioma in vitro and correlation of general toxicity with the balance of free radical oxidation in rats. Croatian Medical Journal, 2016, 57, 151-163.	0.2	23
56	Synthesis and evaluation of anticancer activity of 6-pyrazolinylcoumarin derivatives. Saudi Pharmaceutical Journal, 2017, 25, 214-223.	1.2	23
57	Synthesis, antioxidant and antimicrobial activities of novel thiopyrano[2,3-d]thiazoles based on aroylacrylic acids. Molecular Diversity, 2017, 21, 427-436.	2.1	23
58	Assessing different thiazolidine and thiazole based compounds as antileishmanial scaffolds. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127616.	1.0	22
59	Synthesis of novel indole-thiazolidinone hybrid structures as promising scaffold with anticancer potential. Bioorganic and Medicinal Chemistry, 2021, 50, 116453.	1.4	21
60	Synthesis and Evaluation of Anticancer Activity of 5-Ylidene-4- Aminothiazol-2(5H)-one Derivatives. Medicinal Chemistry, 2015, 11, 517-530.	0.7	19
61	Arylidene pyruvic acids motif in the synthesis of new thiopyrano [2,3- <i>d]thiazoles as potential biologically active compounds. Heterocyclic Communications, 2015, 21, 55-59.</i>	0.6	19
62	Differential pro-apoptotic effects of synthetic 4-thiazolidinone derivative Les-3288, doxorubicin and temozolomide in human glioma U251 cells. Croatian Medical Journal, 2017, 58, 150-159.	0.2	19
63	Novel hybrid pyrrolidinedione-thiazolidinones as potential anticancer agents: Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2022, 238, 114422.	2.6	18
64	Anticancer properties of 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)-thiazol-4-one. Scientific Reports, 2019, 9, 10609.	1.6	17
65	Comparative Investigation of Amino Acids Content in the Dry Extracts of Juno bucharica, Gladiolus Hybrid Zefir, Iris Hungarica, Iris Variegata and Crocus Sativus Raw Materials of Ukrainian Flora. Scientia Pharmaceutica, 2020, 88, 8.	0.7	17
66	Synthesis, Characterization and In Vitro Evaluation of Novel 5-Ene-thiazolo[3,2-b][1,2,4]triazole-6(5H)-ones as Possible Anticancer Agents. Molecules, 2021, 26, 1162.	1.7	17
67	Isorhodanine and Thiorhodanine Motifs in the Synthesis of Fused Thiopyrano[2,3-d][1,3]thiazoles. Synlett, 2011, 2011, 1385-1388.	1.0	15
68	Application of the 2(5 H)furanone motif in the synthesis of new thiopyrano[2,3- d]thiazoles via the hetero-Dielsâ€"Alder reaction and related tandem processes. Tetrahedron Letters, 2016, 57, 3318-3321.	0.7	15
69	5-Year Trends in QSAR and its Machine Learning Methods. Current Computer-Aided Drug Design, 2016, 12, 265-271.	0.8	15
70	Evaluation of Anticancer and Antibacterial Activity of Four 4-Thiazolidinone-Based Derivatives. Molecules, 2022, 27, 894.	1.7	15
71	Synthesis, Biological Activity of Thiazolidinones Bearing Indoline Moiety and Isatin Based Hybrids. Mini-Reviews in Organic Chemistry, 2014, 12, 66-87.	0.6	14
72	Arylidene Pyruvic Acids Motif in the Synthesis of New $2 < i > H < i > 5 < i > H < i > 6 < i > 6 < i < 6 < i < 7 < 10 < 10 < 10 < 10 < 10 < 10 < 10 $	1.1	14

#	Article	IF	CITATIONS
73	Synthesis and anticancer activity evaluation of 3-(4-oxo-2-thioxothiazolidin-5-yl)- $1 < i > H < / i > -1$ indole-carboxylic acids derivatives. Synthetic Communications, 2020, 50, 2830-2838.	1.1	14
74	Synthesis and Anticancer Activity Evaluation of 5-[2-Chloro-3-(4-nitrophenyl)-2-propenylidene]-4-thiazolidinones. Molecules, 2021, 26, 3057.	1.7	14
75	4-Thiazolidinone derivative Les-3833 effectively inhibits viability of human melanoma cells through activating apoptotic mechanisms. Croatian Medical Journal, 2017, 58, 129-139.	0.2	13
76	Development of Predictive QSAR Models of 4â€Thiazolidinones Antitrypanosomal Activity Using Modern Machine Learning Algorithms. Molecular Informatics, 2018, 37, e1700078.	1.4	13
77	Drug design: 4-thiazolidinones applications. Part 2. Pharmacological profiles. Journal of Medical Science, 2020, 89, e407.	0.2	13
78	Investigation of anticancer and anti-parasitic activity of thiopyrano [2,3-d] thiazoles bearing norbornane moiety. Biopolymers and Cell, 2017, 33, 183-205.	0.1	13
79	Synthesis and antiinflammatory activity of some 2-arylamino-2-thiazoline-4-ones. Acta Poloniae Pharmaceutica, 2003, 60, 457-66.	0.3	13
80	Synthesis and biological activity evaluation of new thiazolidinone-diclofenac hybrid molecules. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 836-841.	0.8	12
81	Synthesis, Antibacterial and Antifungal Activity of New 3-Aryl-5H-pyrrolo[1,2-a]imidazole and 5H-Imidazo[1,2-a]azepine Quaternary Salts. Molecules, 2021, 26, 4253.	1.7	12
82	Hydrogen Sulfide Releasing 2-Mercaptoacrylic Acid-Based Derivative Possesses Cytoprotective Activity in a Small Intestine of Rats with Medication-Induced Enteropathy. Scientia Pharmaceutica, 2017, 85, 35.	0.7	11
83	Synthesis, structure and evaluation of anticancer activity of 4-amino-1,3-thiazolinone/pyrazoline hybrids. Journal of Molecular Structure, 2021, 1224, 129059.	1.8	11
84	Biochemical indicators of hepatotoxicity in blood serum of rats under the effect. Ukrainian Biochemical Journal, 2015, 87, 122-132.	0.1	11
85	Drug design: 4-thiazolidinones applications. Part 1. Synthetic routes to the drug-like molecules. Journal of Medical Science, 2020, 89, e406.	0.2	11
86	Characterization of Phytochemical Components of Crocus sativus Leaves: A New Attractive By-Product. Scientia Pharmaceutica, 2021, 89, 28.	0.7	11
87	Study of molecular mechanisms of proapoptotic action of novel heterocyclic 4-thiazolidone derivatives. Biopolymers and Cell, 2012, 28, 121-128.	0.1	11
88	Screening of antioxidant and anti-inflammatory activities among thiopyrano [2,3-d] thiazoles. Biopolymers and Cell, 2015, 31, 131-137.	0.1	11
89	EVALUATION OF NOVEL 4-THIAZOLIDINONE-BASED DERIVATIVES AS POSSIBLE CYTOPROTECTIVE AGENTS AGAINST STRESS MODEL IN RATS. Journal of Applied Pharmaceutical Science, 0, , 199-203.	0.7	11
90	Synthesis of New Schiff Bases and Polycyclic Fused Thiopyranothiazoles Containing 4,6-Dichloro-1,3,5-Triazine Moiety. Journal of Heterocyclic Chemistry, 2013, 50, 1419-1424.	1.4	10

#	Article	IF	CITATIONS
91	Computational Search for Possible Mechanisms of 4â€Thiazolidinones Anticancer Activity: The Power of Visualization. Molecular Informatics, 2014, 33, 216-229.	1.4	10
92	Changes of nitric oxide system and lipid peroxidation parameters in the digestive system of rats under conditions of acute stress, and use of nonsteroidal anti-inflammatory drugs. Current Issues in Pharmacy and Medical Sciences, 2015, 28, 37-41.	0.1	10
93	Enhanced Proapoptotic Effects of Water Dispersed Complexes of 4-Thiazolidinone-Based Chemotherapeutics with a PEG-Containing Polymeric Nanocarrier. Nanoscale Research Letters, 2019, 14, 140.	3.1	10
94	Biochemical indicators of nephrotoxicity in blood serum of rats treated with novel 4-thiazolidinone derivatives or their complexes with polyethylene glycol-containing nanoscale polymeric carrier. Ukrainian Biochemical Journal, 2016, 88, 51-60.	0.1	10
95	Morphology of the Micelles Formed by a Comb-Like PEG-Containing Copolymer Loaded with Antitumor Substances with Different Water Solubilities. Ukrainian Journal of Physics, 2020, 65, 670.	0.1	10
96	Synthesis and Anticancer Activity of Isatin, Oxadiazole and 4-Thiazolidinone Based Conjugates. Chemistry and Chemical Technology, 2015, 9, 29-36.	0.2	10
97	Conformational space and vibrational spectra of 2-[(2,4-dimethoxyphenyl)amino]-1,3-thiazolidin-4-one. Journal of Molecular Modeling, 2014, 20, 2366.	0.8	9
98	Synthesis and in vivo evaluation of pyrazoline-thiazolidin-4-one hybrid Les-5581 as a potential non-steroidal anti-inflammatory agent. Biopolymers and Cell, 2019, 35, 437-447.	0.1	9
99	Synthesis of indoline-thiazolidinone hybrids with antibacterial and antifungal activities. Biopolymers and Cell, 2020, 36, 381-391.	0.1	9
100	Cyclocondensation of Thioamides and Haloacetic Acid Derivatives Provides Only 4-Thiazolidinones; Isomeric 5-Thiazolidinones Were Not observed. Synthetic Communications, 2014, 44, 231-236.	1.1	8
101	trans -Aconitic acid-based hetero -Diels-Alder reaction in the synthesis of thiopyrano[2,3-d][1,3]thiazole derivatives. Tetrahedron Letters, 2017, 58, 1751-1754.	0.7	8
102	The application of anthraquinone-based triazenes as equivalents of diazonium salts in reaction with methylene active compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 409-414.	0.8	8
103	4-thiazolidinone-based derivatives rosiglitazone and pioglitazone affect the expression of antioxidant enzymes in different human cell lines. Biomedicine and Pharmacotherapy, 2021, 139, 111684.	2.5	8
104	Preliminary evaluation of thiazolidinone- and pyrazoline-related heterocyclic derivatives as potential antimalarial agents. Biopolymers and Cell, 2020, 36, 47-59.	0.1	8
105	QSAR Analysis of Antimicrobial Activity of 4-thiazolidone Derivatives. QSAR and Combinatorial Science, 2009, 28, 194-205.	1.5	7
106	Heterocyclic tautomerism: reassignment of two crystal structures of 2-amino-1,3-thiazolidin-4-one derivatives. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 812-816.	0.2	7
107	One-Pot Synthesis of 5-Ene-4-aminothiazol-2(5H)-ones and Chromeno[2,3-d]thiazol-2-ones. Synlett, 2017, 28, 811-814.	1.0	7
108	Unexpected synthesis of azepino [4,3,2-cd] indoles from 4-aminoindoles. Tetrahedron Letters, 2017, 58, 1324-1325.	0.7	7

#	Article	IF	CITATIONS
109	Facile one-pot synthesis of 5-aryl/heterylidene-2-(2-hydroxyethyl- and) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 5 1071-1076.	0 747 Td 1.1	(3-hydroxy 7
110	Isothiochromenothiazolesâ€"A Class of Fused Thiazolidinone Derivatives with Established Anticancer Activity That Inhibits Growth of Trypanosoma brucei brucei. Scientia Pharmaceutica, 2018, 86, 47.	0.7	7
111	Synthesis, antibacterial and antifungal activity of new 3-biphenyl-3H-lmidazo[1,2-a]azepin-1-ium bromides. European Journal of Medicinal Chemistry, 2020, 201, 112477.	2.6	7
112	Synthesis and Biological Activity Evaluation of Polyfunctionalized Anthraquinonehydrazones. Letters in Drug Design and Discovery, 2021, 18, 199-209.	0.4	7
113	2-[7-(3,5-Dibromo-2-hydroxyphenyl)-6-ethoxycarbonyl-2-oxo-5H-2,3,6,7-tetrahydrothiopyrano[2,3-d][1,3]thiazol-6 acid ethanol monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2721-o2722.	-yl]acetic 0.2	6
114	Hematoxylin binds to mutant calreticulin and disrupts its abnormal interaction with thrombopoietin receptor. Blood, 2021, 137, 1920-1931.	0.6	6
115	Targeting of the pro-oxidant-antioxidant balance in vitro and in vivo by 4-thiazolidinone-based chemotherapeutics with anticancer potential. Ukrainian Biochemical Journal, 2019, 91, 7-17.	0.1	6
116	Features of antimicrobial activity of some 5-aminomethylene-2-thioxo-4-thiazolidinones. Biopolymers and Cell, 2019, 35, 371-380.	0.1	6
117	2-{5-[(Z,2Z)-2-Chloro-3-(4-nitrophenyl)-2-propenylidene]-4-oxo-2-thioxothiazolidin-3-yl}-3-methylbutanoic Acid as a Potential Anti-Breast Cancer Molecule. International Journal of Molecular Sciences, 2022, 23, 4091.	1.8	6
118	Synthesis of 4-(2H-[1,2,4]-Triazol-5-ylsulfanyl)-1,2-dihydropyrazol-3-one via Ring-Switching Hydrazinolysis of 5-Ethoxymethylidenethiazolo [3,2-b][1,2,4]triazol-6-one. MolBank, 2018, 2018, M1022.	0.2	5
119	Synthesis and evaluation of antitrypanosomal activity of some thiosemicarbazide derivatives of 1-butyl-6-fluoro-7-morpholino-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Synthetic Communications, 2018, 48, 1883-1891.	1.1	5
120	5â€Arylideneâ€2â€(4â€hydroxyphenyl)aminothiazolâ€4(5 H)â€ones with selective inhibitory activity against som leukemia cell lines. Archiv Der Pharmazie, 2021, 354, 2000342.	e 2.1	5
121	Induction of Cyp450 enzymes by 4-thiazolidinone-based derivatives in 3T3-L1 cells in vitro. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 915-927.	1.4	5
122	Synthesis and evaluation of the anticancer activity of some semisynthetic derivatives of rutaecarpine and evodiamine. Synthetic Communications, 2021, 51, 3237-3245.	1.1	5
123	Evaluation of Anticonvulsant Activity of Dual COX-2/5-LOX Inhibitor Darbufelon and Its Novel Analogues. Scientia Pharmaceutica, 2021, 89, 22.	0.7	5
124	Tandem hetero-Dielsâ \in "Alder-hemiacetal reaction in the synthesis of new chromeno [4â \in 2,3â \in 2:4,5]thiopyrano [2,3- <i>d</i>)thiazoles. Heterocyclic Communications, 2017, 23, 1-5.	0.6	4
125	Synthesis and cytotoxicity of new 2-oxo-7-phenyl-2,3-dihydrothiazolo[4,5-b]pyridine-5-carboxylic acid amides. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 1149-1157.	0.8	4
126	Synthesis of new structurally diverse thiazolidinone-derived compounds based on reaction of isorhodanine with ortho-substituted aldehydes, \hat{l}_{\pm} -keto- and \hat{l}^{2} -aroylacrylic acids. Journal of Molecular Structure, 2020, 1217, 128448.	1.8	4

#	Article	IF	CITATIONS
127	Biodistribution and Anticancer Characteristics of Les-3833, A Novel 4-thiazolidinone-Based Lead Compound. Scientia Pharmaceutica, 2020, 88, 18.	0.7	4
128	The novel pyrazolin-5-one bearing thiazolidin-4-ones: synthesis, characterization and biological evaluation. Biopolymers and Cell, 2021, 37, 46-61.	0.1	4
129	N-(3-Cyano-4,5,6,7-tetrahydrobenzothiophen-2-yl)-2-[[5-[(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)amino]-1,3,4-t MolBank, 2021, 2021, M1211.	hiadiazol-2	2-yl]sulfanyl]
130	4-Thiazolidinone-based derivatives do not affect differentiation of mouse embryo fibroblasts (3T3-L1) Tj ETQq0 0	O rgBT /O	verlock 10 Ti
131	Synthesis and anticancer activity in vitro of isothiochromeno[3,4-d]thiazole derivatives. Annales Universitatis Mariae Curie-Sklodowska Sectio DDD Pharmacia, 2008, 21, 247-251.	0.1	4
132	Increased antitumor efficiency and reduced negative side effects in laboratory mice of 4-thiazolidinone derivatives in complexes with PEG-containing polymeric nanocarrier. Biopolymers and Cell, 2018, 34, 313-328.	0.1	4
133	Synthesis and evaluation of biological activity of rhodanine-pyrazoline hybrid molecules with 2-(2,6-dichlorophenylamino)-phenylacetamide fragment. Biopolymers and Cell, 2020, 36, 133-145.	0.1	4
134	Thiazolidinone-Related Heterocyclic Compounds as Potential Antitrypanosomal Agents. , 0, , .		4
135	Comparison of dual acting drugs and conventional NSAIDs towards parameters of NO-synthase system and oxidative stress in mucosal membrane of large intestine of rats with experimental ulcerative colitis. Biopolymers and Cell, 2011, 27, 147-153.	0.1	3
136	Study of 1,2,4-triazole-3(5)-thiol Behavior in Reactions with 1-phenyl-1H-pyrrole-2,5-dione Derivatives and 3-bromodihydrofuran-2(3H)-one and Antimicrobial Activity of Products. Chemistry Proceedings, 2020, 3, .	0.1	3
137	Study of 1,3-dipolar cycloaddition of amino-acid azomethines and Juglone. Synthetic Communications, 2020, 50, 3165-3173.	1.1	2
138	Pharmacies for the Pharmacists—Ukrainian Fears and Polish Experiences. Scientia Pharmaceutica, 2020, 88, 7.	0.7	2
139	In silico identification and biochemical validation of plausible molecular targets of 4-thiazolidinone derivative Les-3833 as a potential anticancer agent. Ukrainian Biochemical Journal, 2021, 93, 7-22.	0.1	2
140	2-[N-(2,4-Dimethoxyphenyl)acetamido]-1,3-thiazol-4-yl acetate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o356-o357.	0.2	2
141	Synthesis of 3S-Substituted Triazino[5,6-b]indoles and 4-Thiazolidinone-triazino[5,6-b]indole Hybrids with Antitumor Activity. Chemistry and Chemical Technology, 2013, 7, 381-389.	0.2	2
142	Design and development of new thiazolidinone-based drug-like molecules. Biopolymers and Cell, 2019, 35, 222-222.	0.1	2
143	Synthesis and evaluation of biological activity of 1 -[2-amino-4-methylthiazol-5-yl]-3-arylpropenones. Biopolymers and Cell, 2021, 37, 389-399.	0.1	2
144	2,2-Dichloro-N-[5-[2-[3-(4-methoxyphenyl)-5-phenyl-3,4-dihydro-2H-pyrazol-2-yl]-2-oxoethyl]sulfanyl-1,3,4-thiadia MolBank, 2022, 2022, M1328.	zol-2-yl]ac 0.2	etamide.

#	Article	IF	CITATIONS
145	Synthesis and structure elucidation of thiopyrano[2,3-d]thiazole-6-carbonitriles as adducts of Michael reaction. Journal of Molecular Structure, 2022, 1256, 132574.	1.8	2
146	An overview on 1,2,4-triazole and 1,3,4-thiadiazole derivatives as potential anesthesic and anti-inflammatory agents. ScienceRise: Pharmaceutical Science, 2022, , 10-17.	0.1	2
147	2-[N-(4-Methoxyphenyl)acetamido]-1,3-thiazol-4-yl acetate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o391-o391.	0.2	1
148	Modified Coumarins. 38. Synthesis and Cytotoxicity of 6-Pyrazolinylcoumarins. Chemistry of Natural Compounds, 2016, 52, 782-788.	0.2	1
149	Anti-inflammatory hydrogen sulfide-releasing agents with reduced gastro- and enterotoxicity on the stress model in rats. Minerva Biotechnology and Biomolecular Research, 2021, 33, .	0.3	1
150	5-[4-(tert-Butyl)cyclohexylidene]-2-thioxothiazolidin-4-one. MolBank, 2021, 2021, M1281.	0.2	1
151	Molecular Design, Synthesis, and Properties of Surface-Active Comb-Like PEG-Containing Polymers and Derived Supramolecular Structures for Drug Delivery. , 2022, , 17-57.		1
152	Đ¡Đ~ĐĐ¢Đ•Đ— 3-ĐŸĐ†ĐĐ~Đ"Đ~лЗĐĐœĐ†Đ ©Đ•ĐĐ~Đ¥ 4-Đ¢Đ†ĐЗОлІДĐ~ĐĐžĐІВ Đ~Đš ĐŸĐžĐ¢Đ•	ĐĐ¢Đ†Đ™	^м Đ Đ ~Đ¥ БІ€
153	EFFECTS OF 4-THIAZOLIDINONE DERIVATIVES LES-2658 AND LES-1205 ON SLEEP - WAKEFULNESS CYCLE IN KINDLED RATS. EUREKA Life Sciences, 2017, 1, 51-56.	0.1	1
154	Use of lectins as vector molecules for delivery of drugs to cells and tissues. Report 2 Biopolymers and Cell, 2019, 35, 54-63.	0.1	1
155	Psychotropic properties of a potential anticonvulsant of 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-ylimino)-4-thiazolidinone. News of Pharmacy, 2021, , 96-103.	0.1	1
156	Use of lectin as a vector molecule for delivery of medicinal products to cells and tissues. Biopolymers and Cell, 2016, 32, 461-467.	0.1	1
157	Đ¡Đ~ĐĐ¢Đ•Đ— Đ¢Đ•Đ'ІОЛОĐ"ІЧĐĐ•ĐĐšĐ¢Đ~Đ'ĐĐ†Đ¡Đ¢Đ¬ ĐОВĐ~Đ¥ ĐŸĐžĐ¥Đ†Đ"ĐĐ~Đ¥ 5-ĐĐœĐ·	†ĐĐŽĐŒĐ)•Đ�Đ~Đ>ЕЕ <u>2</u>
158	Indicators of oxidative and nitrosative stress and activity of enzymes of nitric oxide metabolism in rats treated with 4-thiazolidinone derivatives possessing antineoplastic activity. Ukrainian Biochemical Journal, 2017, 89, 77-83.	0.1	1
159	Recycling of expired paracetamol-containing drugs as source of useful reagents for an organic synthesis. Journal of Applied Pharmaceutical Science, 2019, 9, 52-56.	0.7	1
160	Screening study of new thiazolidinone derivatives for anticonvulsant activity. Zaporožskij Medicinskij Žurnal, 2020, .	0.0	1
161	Synthesis and Biological Activity Evaluation of Novel 5-Methyl-7-phenyl-3H-thiazolo[4,5-b]pyridin-2-ones. Scientia Pharmaceutica, 2021, 89, 52.	0.7	1
162	The synthesis and the anticonvulsant activity screening of new 5-substituted 2-imino-4-thiazolidinone derivatives. Journal of Organic and Pharmaceutical Chemistry, 2022, 20, 12-20.	0.0	1

#	Article	IF	CITATIONS
163	Design and synthesis of ibuprofen salts as anti-inflammatory agents in the form of semi-solid preparations for topical use. Journal of Pharmacy and Pharmacology, 2011, 50, 250-250.	1.2	0
164	Rhodanine 3-carboxylic acids as potential NSAIDs. Journal of Pharmacy and Pharmacology, 2011, 50, 240-240.	1.2	0
165	Computer technologies in pharmacy-Filling in the gaps in Ukrainian PharmD curriculum. Currents in Pharmacy Teaching and Learning, 2015, 7, 556-559.	0.4	0
166	Citraconic acid and its anhydride-based hetero-Diels–Alder reactions in the synthesis of new thiopyrano[2,3-d][1,3]thiazole derivatives. Synthetic Communications, 0, , 1-7.	1.1	0
167	Cell immunity of laboratory animals under the influence of 5-indolylmethylene rhodanine-3-carboxylic/sulphonic acid derivative. ScienceRise: Pharmaceutical Science, 2021, , 76-81.	0.1	0
168	The cytotoxic potential of a novel 2-thioxo-4-thiazolidinone derivative used with anti-HER2 antibodies in AGS gastric cancer cells. , 0 , , .		0
169	The pro-apoptotic effect of new 2-thioxo-4-thiazolidinone derivative Les-3331 on MCF-7 and MDA-MB-231 cell lines. , 0, , .		0
170	Study of Metal-Organic Nanomaterials Structure by X-ray Crystallography Analysis as the Basis for the Development of Quality Control Methods. Journal of Pharmacy and Pharmacology, 2015, 4, .	0.1	0
171	Synthesis of novel 4H-1,2,4-triazole-3-thiol derivatives with 2-(2,6-dichlorophenylamino)benzyl fragment in molecules and their anti-inflammatory activity. Aktualʹnì PitannĀ¢ FarmacevtiÄnoÃ⁻ ì MediÄnoÃ⁻ Nauki Ta Praktiki, 2016, .	0.0	O
172	Nitric oxide as the main multifunctional regulator of immunocompetent and endothelial cells. Biopolymers and Cell, 2017, 33, 323-334.	0.1	0
173	Amine–imine proton tautomerism in isomeric 2-phenylamino-1,3-thiazol-4(5H)- and 4-phenylamino-1,3-thiazol-2(5H)-one derivatives. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e665-e665.	0.0	0
174	Regioselective IED Diels-Alder Reaction of Bis-(4,6-dichloro-[1,3,5]triazin- 2-yl)-diazene with Furan and Its Molecular Mechanism. Letters in Organic Chemistry, 2020, 17, 639-644.	0.2	0
175	Synthesis and biological activity of new rhodanine-triazole conjugates with 2-(2,6-dichlorophenylamino)benzyl moiety in the molecules. Aktualʹnì Pitannâ FarmacevtiÄnoïì MediÄnoÃ Nauki Ta Praktiki, 2020, .	ί ō. ο	O
176	Indicators of mineral metabolism and dental status of young rats born from female with methionine-induced hyperhomocysteinemia. Ukrainian Biochemical Journal, 2021, 93, 93-100.	0.1	0
177	Compounding in Ukraine: Assessment of the Risks for the Ointment's Quality by the FMECA Method. Scientia Pharmaceutica, 2022, 90, 25.	0.7	O
178	3-(2-Diisopropylaminoethyl)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione. MolBank, 2022, 2022, M1394.	0.2	0