Matthias Liess

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3986233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 2015, 22, 5-34.	5.3	1,215
2	Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International, 2015, 74, 291-303.	10.0	913
3	Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research, 2015, 22, 35-67.	5.3	903
4	Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 2015, 22, 68-102.	5.3	639
5	Pesticides reduce regional biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11039-11043.	7.1	578
6	Analyzing effects of pesticides on invertebrate communities in streams. Environmental Toxicology and Chemistry, 2005, 24, 954-965.	4.3	571
7	Guidance on tiered risk assessment for plant protection products for aquatic organisms in edgeâ€ofâ€field surface waters. EFSA Journal, 2013, 11, 3290.	1.8	424
8	Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Science of the Total Environment, 2007, 382, 272-285.	8.0	330
9	Combined and interactive effects of global climate change and toxicants on populations and communities. Environmental Toxicology and Chemistry, 2013, 32, 49-61.	4.3	266
10	Thresholds for the Effects of Pesticides on Invertebrate Communities and Leaf Breakdown in Stream Ecosystems. Environmental Science & amp; Technology, 2012, 46, 5134-5142.	10.0	220
11	Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environmental Science and Pollution Research, 2015, 22, 148-154.	5.3	206
12	Determination of insecticide contamination in agricultural headwater streams. Water Research, 1999, 33, 239-247.	11.3	190
13	Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environmental Toxicology and Chemistry, 2008, 27, 461-470.	4.3	185
14	RELATIVE SENSITIVITY DISTRIBUTION OF AQUATIC INVERTEBRATES TO ORGANIC AND METAL COMPOUNDS. Environmental Toxicology and Chemistry, 2004, 23, 150.	4.3	177
15	Structural AlertsA New Classification Model to Discriminate Excess Toxicity from Narcotic Effect Levels of Organic Compounds in the Acute Daphnid Assay. Chemical Research in Toxicology, 2005, 18, 536-555.	3.3	174
16	The footprint of pesticide stress in communities—Species traits reveal community effects of toxicants. Science of the Total Environment, 2008, 406, 484-490.	8.0	173
17	Predicting the synergy of multiple stress effects. Scientific Reports, 2016, 6, 32965.	3.3	168
18	A comparison of predicted and measured levels of runoff-related pesticide concentrations in small lowland streams on a landscape level. Chemosphere, 2005, 58, 683-691.	8.2	167

#	Article	IF	CITATIONS
19	Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides. Science of the Total Environment, 2012, 415, 31-38.	8.0	150
20	A field study of the effects of agriculturally derived insecticide input on stream macroinvertebrate dynamics. Aquatic Toxicology, 1999, 46, 155-176.	4.0	149
21	The significance of entry routes as point and non-point sources of pesticides in small streams. Water Research, 2002, 36, 835-842.	11.3	143
22	Potential of 11 Pesticides to Initiate Downstream Drift of Stream Macroinvertebrates. Archives of Environmental Contamination and Toxicology, 2008, 55, 247-253.	4.1	135
23	Pesticides from wastewater treatment plant effluents affect invertebrate communities. Science of the Total Environment, 2017, 599-600, 387-399.	8.0	131
24	Climate change, agricultural insecticide exposure, and risk for freshwater communities. , 2011, 21, 2068-2081.		122
25	Long-term stream invertebrate community alterations induced by the insecticide thiacloprid: Effect concentrations and recovery dynamics. Science of the Total Environment, 2008, 405, 96-108.	8.0	120
26	Traits and stress: keys to identify community effects of low levels of toxicants in test systems. Ecotoxicology, 2011, 20, 1328-1340.	2.4	118
27	Pesticides are the dominant stressors for vulnerable insects in lowland streams. Water Research, 2021, 201, 117262.	11.3	118
28	A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. Science of the Total Environment, 2011, 409, 2055-2063.	8.0	116
29	Ecotoxicology and macroecology – Time for integration. Environmental Pollution, 2012, 162, 247-254.	7.5	104
30	Title is missing!. Water, Air, and Soil Pollution, 2002, 135, 265-283.	2.4	102
31	Modeling global distribution of agricultural insecticides in surface waters. Environmental Pollution, 2015, 198, 54-60.	7.5	100
32	SPEAR indicates pesticide effects in streams – Comparative use of species- and family-level biomonitoring data. Environmental Pollution, 2009, 157, 1841-1848.	7.5	98
33	Population response to toxicants is altered by intraspecific interaction. Environmental Toxicology and Chemistry, 2002, 21, 138-142.	4.3	97
34	The Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory. Environmental Earth Sciences, 2017, 76, 1.	2.7	93
35	Traitsâ€based approaches in bioassessment and ecological risk assessment: Strengths, weaknesses, opportunities and threats. Integrated Environmental Assessment and Management, 2011, 7, 198-208.	2.9	87
36	ACUTE CONTAMINATION WITH ESFENVALERATE AND FOOD LIMITATION: CHRONIC EFFECTS ON THE MAYFLY, CLOEON DIPTERUM. Environmental Toxicology and Chemistry, 2005, 24, 1281.	4.3	85

#	Article	IF	CITATIONS
37	Mapping ecological risk of agricultural pesticide runoff. Science of the Total Environment, 2007, 384, 264-279.	8.0	80
38	Future pesticide risk assessment: narrowing the gap between intention and reality. Environmental Sciences Europe, 2019, 31, .	5.5	80
39	Towards a renewed research agenda in ecotoxicology. Environmental Pollution, 2012, 160, 201-206.	7.5	78
40	Predation risk perception and food scarcity induce alterations of life-cycle traits of the mosquito Culex pipiens. Ecological Entomology, 2007, 32, 405-410.	2.2	77
41	Culmination of Low-Dose Pesticide Effects. Environmental Science & Technology, 2013, 47, 8862-8868.	10.0	77
42	Call to restrict neonicotinoids. Science, 2018, 360, 973-973.	12.6	77
43	Calibration of the Chemcatcher® passive sampler for monitoring selected polar and semi-polar pesticides in surface water. Environmental Pollution, 2008, 155, 52-60.	7.5	75
44	Scientific Opinion on Risk Assessment for a Selected Group of Pesticides from the Triazole Group to Test Possible Methodologies to Assess Cumulative Effects from Exposure through Food from these Pesticides on Human Health. EFSA Journal, 2009, 7, .	1.8	75
45	In Situ–Based Effects Measures: Determining the Ecological Relevance of Measured Responses. Integrated Environmental Assessment and Management, 2007, 3, 259.	2.9	74
46	Occurrence and Toxicity of 331 Organic Pollutants in Large Rivers of North Germany over a Decade (1994 to 2004). Environmental Science & Technology, 2011, 45, 6167-6174.	10.0	73
47	Water quality indices across Europe—a comparison of the good ecological status of five river basins. Journal of Environmental Monitoring, 2007, 9, 970.	2.1	71
48	Effects of organic pollutants from wastewater treatment plants on aquatic invertebrate communities. Water Research, 2013, 47, 597-606.	11.3	71
49	How to Characterize Chemical Exposure to Predict Ecologic Effects on Aquatic Communities?. Environmental Science & Technology, 2013, 47, 7996-8004.	10.0	71
50	Sub-lethal effects of metal exposure: physiological and behavioural responses of the estuarine bivalve Macoma balthica. Marine Environmental Research, 2004, 58, 245-250.	2.5	67
51	Estimating pesticide runoff in small streams. Chemosphere, 2007, 68, 2161-2171.	8.2	67
52	Performance of the Chemcatcher® passive sampler when used to monitor 10 polar and semi-polar pesticides in 16 Central European streams, and comparison with two other sampling methods. Water Research, 2008, 42, 2707-2717.	11.3	67
53	Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?. Ecological Modelling, 2016, 326, 63-74.	2.5	66
54	Assessing the Mixture Effects in <i>In Vitro</i> Bioassays of Chemicals Occurring in Small Agricultural Streams during Rain Events. Environmental Science & Technology, 2020, 54, 8280-8290.	10.0	66

#	Article	IF	CITATIONS
55	Occurrence and risk assessment of organic micropollutants in freshwater systems within the Lake Victoria South Basin, Kenya. Science of the Total Environment, 2020, 714, 136748.	8.0	66
56	Small streams–large concentrations? Pesticide monitoring in small agricultural streams in Germany during dry weather and rainfall. Water Research, 2021, 203, 117535.	11.3	66
57	Intraspecific competition delays recovery of population structure. Aquatic Toxicology, 2010, 97, 15-22.	4.0	64
58	Chronic effects of short-term contamination with the pyrethroid insecticide fenvalerate on the caddisfly Limnephilus lunatus. Hydrobiologia, 1996, 324, 99-106.	2.0	61
59	Toxicity of fenvalerate to caddisfly larvae: chronic effects of 1- vs 10-h pulse-exposure with constant doses. Chemosphere, 2000, 41, 1511-1517.	8.2	60
60	Combined effects of ultravioletâ€B radiation and food shortage on the sensitivity of the Antarctic amphipod <i>Paramoera walkeri</i> to copper. Environmental Toxicology and Chemistry, 2001, 20, 2088-2092.	4.3	59
61	Competition increases toxicant sensitivity and delays the recovery of two interacting populations. Aquatic Toxicology, 2012, 106-107, 25-31.	4.0	57
62	Effects of contaminants in the Antarctic environment — potential of the gammarid amphipod crustacean Paramorea walkeri as a biological indicator for Antarctic ecosystems based on toxicity and bioacccumulation of copper and cadmium. Aquatic Toxicology, 2000, 49, 131-143.	4.0	56
63	Maternal nutritional state determines the sensitivity of Daphnia magna offspring to short-term Fenvalerate exposure. Aquatic Toxicology, 2006, 76, 268-277.	4.0	56
64	An indicator for effects of organic toxicants on lotic invertebrate communities: Independence of confounding environmental factors over an extensive river continuum. Environmental Pollution, 2008, 156, 980-987.	7.5	56
65	A method for monitoring pesticides bound to suspended particles in small streams. Chemosphere, 1996, 32, 1963-1969.	8.2	55
66	A qualitative field method for monitoring pesticides in the edge-of-field runoff. Chemosphere, 1998, 36, 3071-3082.	8.2	54
67	Indication of pesticide effects and recolonization in streams. Science of the Total Environment, 2018, 630, 1619-1627.	8.0	52
68	Aquatic passive sampling of a short-term thiacloprid pulse with the Chemcatcher: Impact of biofouling and use of a diffusion-limiting membrane on the sampling rate. Journal of Chromatography A, 2008, 1203, 1-6.	3.7	51
69	Pesticide impact on aquatic invertebrates identified with Chemcatcher® passive samplers and the SPEARpesticides index. Science of the Total Environment, 2015, 537, 69-80.	8.0	51
70	Evaluation of Exposure Metrics for Effect Assessment of Soil Invertebrates. Critical Reviews in Environmental Science and Technology, 2012, 42, 1862-1893.	12.8	50
71	Forested headwaters mitigate pesticide effects on macroinvertebrate communities in streams: Mechanisms and quantification. Science of the Total Environment, 2015, 524-525, 115-123.	8.0	50
72	AGRICULTURAL INTENSITY AND LANDSCAPE STRUCTURE: INFLUENCES ON THE MACROINVERTEBRATE ASSEMBLAGES OF SMALL STREAMS IN NORTHERN GERMANY. Environmental Toxicology and Chemistry, 2007, 26, 346.	4.3	49

#	Article	IF	CITATIONS
73	Scientific Opinion addressing the state of the science on risk assessment of plant protection products for nonâ€ŧarget arthropods. EFSA Journal, 2015, 13, 3996.	1.8	49
74	The influence of predation on the chronic response of Artemia sp. populations to a toxicant. Journal of Applied Ecology, 2006, 43, 1069-1074.	4.0	48
75	Effects of the Hormone Mimetic Insecticide Tebufenozide on Chironomus riparius Larvae in Two Different Exposure Setups. Ecotoxicology and Environmental Safety, 2001, 49, 171-178.	6.0	47
76	Landscape parameters driving aquatic pesticide exposure and effects. Environmental Pollution, 2014, 186, 90-97.	7.5	47
77	Do predictions from Species Sensitivity Distributions match with field data?. Environmental Pollution, 2014, 189, 126-133.	7.5	47
78	LONG-TERM SIGNAL OF POPULATION DISTURBANCE AFTER PULSE EXPOSURE TO AN INSECTICIDE: RAPID RECOVERY OF ABUNDANCE, PERSISTENT ALTERATION OF STRUCTURE. Environmental Toxicology and Chemistry, 2006, 25, 1326.	4.3	46
79	INFLUENCE OF DURATION OF EXPOSURE TO THE PYRETHROID FENVALERATE ON SUBLETHAL RESPONSES AND RECOVERY OF DAPHNIA MAGNA STRAUS. Environmental Toxicology and Chemistry, 2005, 24, 1160.	4.3	45
80	Environmental Stress Increases Synergistic Effects of Pesticide Mixtures on <i>Daphnia magna</i> . Environmental Science & Technology, 2019, 53, 12586-12593.	10.0	45
81	Effects of parathion on acetylcholinesterase, butyrylcholinesterase, and carboxylesterase in threeâ€spined stickleback (<i>Gasterosteus aculeatus</i>) following shortâ€ŧerm exposure. Environmental Toxicology and Chemistry, 2001, 20, 1528-1531.	4.3	44
82	Species at Risk (SPEAR) index indicates effects of insecticides on stream invertebrate communities in soy production regions of the Argentine Pampas. Science of the Total Environment, 2017, 580, 699-709.	8.0	44
83	Interspecific competition delays recovery of Daphnia spp. populations from pesticide stress. Ecotoxicology, 2012, 21, 1039-1049.	2.4	42
84	Environmental context determines community sensitivity of freshwater zooplankton to a pesticide. Aquatic Toxicology, 2011, 104, 116-124.	4.0	41
85	Intraspecific competition increases toxicant effects in outdoor pond microcosms. Ecotoxicology, 2012, 21, 1857-1866.	2.4	41
86	Adaptation of Gammarus pulex to agricultural insecticide contamination in streams. Science of the Total Environment, 2018, 621, 479-485.	8.0	41
87	Effects of chronic ammonium and nitrite contamination on the macroinvertebrate community in running water microcosms. Water Research, 2001, 35, 3478-3482.	11.3	39
88	LINKING FEEDING ACTIVITY AND MATURATION OF DAPHNIA MAGNA FOLLOWING SHORT-TERM EXPOSURE TO FENVALERATE. Environmental Toxicology and Chemistry, 2006, 25, 1826.	4.3	39
89	INFLUENCE OF FOOD LIMITATION ON THE EFFECTS OF FENVALERATE PULSE EXPOSURE ON THE LIFE HISTORY AND POPULATION GROWTH RATE OF DAPHNIA MAGNA. Environmental Toxicology and Chemistry, 2005, 24, 2254.	4.3	37
90	Chronic effects of low insecticide concentrations on freshwater caddisfly larvae. Hydrobiologia, 1995, 299, 103-113.	2.0	36

#	Article	IF	CITATIONS
91	Increased sensitivity of the macroinvertebrate Paramorea walkeri to heavy-metal contamination in the presence of solar UV radiation in Antarctic shoreline waters. Marine Ecology - Progress Series, 2003, 255, 183-191.	1.9	35
92	Acute and Chronic Effects of Particle-Associated Fenvalerate on Stream Macroinvertebrates: A Runoff Simulation Study Using Outdoor Microcosms. Archives of Environmental Contamination and Toxicology, 2001, 40, 481-488.	4.1	34
93	A qualitative sampling method for monitoring water quality in temporary channels or point sources and its application to pesticide contamination. Chemosphere, 2003, 51, 509-513.	8.2	34
94	Do drivers of biodiversity change differ in importance across marine and terrestrial systems — Or is it just different research communities' perspectives?. Science of the Total Environment, 2017, 574, 191-203.	8.0	32
95	Runoff simulation with particleâ€bound fenvalerate in multispecies stream microcosms: Importance of biological interactions. Environmental Toxicology and Chemistry, 2001, 20, 757-762.	4.3	31
96	Pesticide pollution in freshwater paves the way for schistosomiasis transmission. Scientific Reports, 2020, 10, 3650.	3.3	31
97	Bioaccumulation of trace metals in the Antarctic amphipod Paramoera walkeri (Stebbing, 1906): comparison of two-compartment and hyperbolic toxicokinetic models. Aquatic Toxicology, 2003, 65, 117-140.	4.0	30
98	Sequential exposure to low levels of pesticides and temperature stress increase toxicological sensitivity of crustaceans. Science of the Total Environment, 2018, 610-611, 563-569.	8.0	30
99	Variability of pesticide exposure in a stream mesocosm system: Macrophyte-dominated vs. non-vegetated sections. Environmental Pollution, 2008, 156, 1364-1367.	7.5	29
100	Pesticide Body Burden of the Crustacean <i>Gammarus pulex</i> as a Measure of Toxic Pressure in Agricultural Streams. Environmental Science & amp; Technology, 2018, 52, 7823-7832.	10.0	29
101	Linking land use variables and invertebrate taxon richness in small and medium-sized agricultural streams on a landscape level. Ecotoxicology and Environmental Safety, 2005, 60, 140-146.	6.0	28
102	The Potential of Cladocerans as Controphic Competitors of the Mosquito Culex pipiens. Journal of Medical Entomology, 2011, 48, 554-560.	1.8	27
103	Recovery of aquatic and terrestrial populations in the context of European pesticide risk assessment. Environmental Reviews, 2015, 23, 382-394.	4.5	27
104	Metal toxicity affects predatory stream invertebrates less than other functional feeding groups. Environmental Pollution, 2017, 227, 505-512.	7.5	27
105	Two stressors and a community – Effects of hydrological disturbance and a toxicant on freshwater zooplankton. Aquatic Toxicology, 2013, 127, 9-20.	4.0	26
106	Stream invertebrate community structure at Canadian oil sands development is linked to concentration of bitumen-derived contaminants. Science of the Total Environment, 2017, 575, 1005-1013.	8.0	26
107	Elevated temperature prolongs longâ€ŧerm effects of a pesticide on <i><scp>D</scp>aphnia</i> spp. due to altered competition in zooplankton communities. Global Change Biology, 2013, 19, 1598-1609.	9.5	25
108	Species Diversity Hinders Adaptation to Toxicants. Environmental Science & Technology, 2017, 51, 10195-10202.	10.0	25

#	Article	IF	CITATIONS
109	An expert system to estimate the pesticide contamination of small streams using benthic macroinvertebrates as bioindicators II. The knowledge base of LIMPACT. Ecological Indicators, 2003, 2, 391-401.	6.3	24
110	EFFECTS OF THE ORGANOPHOSPHATE PARAOXON-METHYL ON SURVIVAL AND REPRODUCTION OF DAPHNIA MAGNA: IMPORTANCE OF EXPOSURE DURATION AND RECOVERY. Environmental Toxicology and Chemistry, 2006, 25, 1196.	4.3	24
111	Making ecosystem reality checks the status quo. Environmental Toxicology and Chemistry, 2012, 31, 459-468.	4.3	24
112	Scientific Opinion on the effect assessment for pesticides on sediment organisms in edgeâ€ofâ€field surface water. EFSA Journal, 2015, 13, 4176.	1.8	24
113	Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach. Science of the Total Environment, 2021, 769, 144324.	8.0	24
114	Pesticide Peak Discharge from Wastewater Treatment Plants into Streams During the Main Period of Insecticide Application: Ecotoxicological Evaluation in Comparison to Runoff. Bulletin of Environmental Contamination and Toxicology, 2003, 70, 891-897.	2.7	23
115	Determination of 10 particle-associated multiclass polar and semi-polar pesticides from small streams using accelerated solvent extraction. Chemosphere, 2008, 70, 1952-1960.	8.2	23
116	Modeling the synergistic effects of toxicant mixtures. Environmental Sciences Europe, 2020, 32, .	5.5	23
117	Modelling aquatic exposure and effects of insecticides $\hat{a} \in$ " Application to south-eastern Australia. Science of the Total Environment, 2011, 409, 2807-2814.	8.0	22
118	Analysing chemical-induced changes in macroinvertebrate communities in aquatic mesocosm experiments: a comparison of methods. Ecotoxicology, 2015, 24, 760-769.	2.4	22
119	Predicting low-concentration effects of pesticides. Scientific Reports, 2019, 9, 15248.	3.3	22
120	A similarityâ€index–based method to estimate chemical concentration limits protective for ecological communities. Environmental Toxicology and Chemistry, 2010, 29, 2123-2131.	4.3	21
121	Biotic interactions govern genetic adaptation to toxicants. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150071.	2.6	21
122	Modeling Macroinvertebrate Community Dynamics in Stream Mesocosms Contaminated with a Pesticide. Environmental Science & amp; Technology, 2016, 50, 3165-3173.	10.0	21
123	The use of image analysis to estimate population growth rate in Daphnia magna. Journal of Applied Ecology, 2006, 43, 828-834.	4.0	20
124	Do Riparian Buffers Protect Stream Invertebrate Communities in South American Atlantic Forest Agricultural Areas?. Environmental Management, 2017, 60, 1155-1170.	2.7	20
125	Population Developmental Stage Determines the Recovery Potential ofDaphnia magnaPopulations after Fenvalerate Application. Environmental Science & amp; Technology, 2006, 40, 6157-6162.	10.0	19
126	Effects of the pyrethroid fenvalerate on the alarm response and on the vulnerability of the mosquito larva Culex pipiens molestus to the predator Notonecta glauca. Aquatic Toxicology, 2011, 104, 56-60.	4.0	18

#	Article	IF	CITATIONS
127	Sustainable control of mosquito larvae in the field by the combined actions of the biological insecticide Bti and natural competitors. Journal of Vector Ecology, 2013, 38, 82-89.	1.0	18
128	Competition matters: Species interactions prolong the longâ€ŧerm effects of pulsed toxicant stress on populations. Environmental Toxicology and Chemistry, 2014, 33, 1458-1465.	4.3	17
129	DIFFERENT SENSITIVITY TO ORGANOPHOSPHATES OF ACETYLCHOLINESTERASE AND BUTYRYLCHOLINESTERASE FROM THREE-SPINED STICKLEBACK (GASTEROSTEUS ACULEATUS): APPLICATION IN BIOMONITORING. Environmental Toxicology and Chemistry, 2000, 19, 1607.	4.3	17
130	Insecticides in agricultural streams exert pressure for adaptation but impair performance in Gammarus pulex at regulatory acceptable concentrations. Science of the Total Environment, 2020, 722, 137750.	8.0	16
131	Influence of competing and predatory invertebrate taxa on larval populations of mosquitoes in temporary ponds of wetland areas in Germany. Journal of Vector Ecology, 2010, 35, 419-427.	1.0	15
132	Short-term disturbance of a grazer has long-term effects on bacterial communities—Relevance of trophic interactions for recovery from pesticide effects. Aquatic Toxicology, 2010, 99, 205-211.	4.0	14
133	Automated Nanocosm test system to assess the effects of stressors on two interacting populations. Aquatic Toxicology, 2012, 109, 243-249.	4.0	14
134	Drivers of pesticide resistance in freshwater amphipods. Science of the Total Environment, 2020, 735, 139264.	8.0	14
135	Ultraviolet Radiation Increases Sensitivity to Pesticides: Synergistic Effects on Population Growth Rate of Daphnia magna at Low Concentrations. Bulletin of Environmental Contamination and Toxicology, 2011, 87, 231-237.	2.7	13
136	Rebuttal related to "Traits and Stress: Keys to identify community effects of low levels of toxicants in test systems―by Liess and Beketov (2011). Ecotoxicology, 2012, 21, 300-303.	2.4	13
137	An expert system to estimate the pesticide contamination of small streams using benthic macroinvertebrates as bioindicators. Ecological Indicators, 2003, 2, 379-389.	6.3	11
138	Realistic pesticide exposure through water and food amplifies long-term effects in a Limnephilid caddisfly. Science of the Total Environment, 2017, 580, 1439-1445.	8.0	11
139	What Environmental Factors Are Important Determinants of Structure, Species Richness, and Abundance of Mosquito Assemblages?. Journal of Medical Entomology, 2010, 47, 129-139.	1.8	11
140	Multiple Stress Reduces the Advantage of Pesticide Adaptation. Environmental Science & Technology, 2021, 55, 15100-15109.	10.0	11
141	Crustacean biodiversity as an important factor for mosquito larval control. Journal of Vector Ecology, 2013, 38, 390-400.	1.0	9
142	Risk Assessment for Birds and Mammals ―Revision of Guidance Document under Council Directive 91/414/EEC (SANCO/4145/2000 – final of 25 September 2002) ―Scientific Opinion of the Panel on Plant protection products and their Residues (PPR) on the Science behind the Guidance Document on Risk Assessment for birds and mammals. EFSA Journal, 2008, 6, 734.	1.8	8
143	Risk assessment of episodic exposures to chemicals should consider both the physiological and the ecological sensitivities of species. Science of the Total Environment, 2012, 441, 213-219.	8.0	8
144	Scientific Opinion on the report of the FOCUS groundwater working group (FOCUS, 2009): assessment of higher tiers. EFSA Journal, 2013, 11, 3291.	1.8	8

#	Article	IF	CITATIONS
145	Temporal and spatial habitat preferences and biotic interactions between mosquito larvae and antagonistic crustaceans in the field. Journal of Vector Ecology, 2014, 39, 103-111.	1.0	8
146	Calibration of the SPEARpesticides bioindicator for cost-effective pesticide monitoring in East African streams. Environmental Sciences Europe, 2021, 33, .	5.5	8
147	Competition impedes the recovery of Daphnia magna from repeated insecticide pulses. Aquatic Toxicology, 2014, 147, 26-31.	4.0	7
148	Long-term effects of a catastrophic insecticide spill on stream invertebrates. Science of the Total Environment, 2021, 768, 144456.	8.0	7
149	The EU chemicals strategy for sustainability: an opportunity to develop new approaches for hazard and risk assessment. Archives of Toxicology, 2022, 96, 2381-2386.	4.2	7
150	Indirect Effects of Pesticides on Mosquito Larvae Via Alterations of Community Structure. Israel Journal of Ecology and Evolution, 2010, 56, 433-477.	0.6	6
151	Identification of pesticide exposure-induced metabolic changes in mosquito larvae. Science of the Total Environment, 2018, 643, 1533-1541.	8.0	6
152	20Âyears SETAC GLB: increasing realism of pesticide risk assessment. Environmental Sciences Europe, 2019, 31, .	5.5	6
153	Species occurrence relates to pesticide gradient in streams. Science of the Total Environment, 2020, 735, 138807.	8.0	6
154	Pesticide-induced metabolic changes are amplified by food stress. Science of the Total Environment, 2021, 792, 148350.	8.0	6
155	Sediment Toxicity Testing for Prospective Risk Assessment—A New Framework and How to Establish It. Human and Ecological Risk Assessment (HERA), 2013, 19, 98-117.	3.4	5
156	Statistics matter: data aggregation improves identification of community-level effects compared to a commonly used multivariate method. Ecotoxicology, 2013, 22, 1516-1525.	2.4	5
157	Environmental stressors can enhance the development of community tolerance to a toxicant. Ecotoxicology, 2014, 23, 1690-1700.	2.4	5
158	POTENTIAL USE OF CHOLINESTERASE IN MONITORING LOW LEVELS OF ORGANOPHOSPHATES IN SMALL STREAMS: NATURAL VARIABILITY IN THREE-SPINED STICKLEBACK (GASTEROSTEUS ACULEATUS) AND RELATION TO POLLUTION. Environmental Toxicology and Chemistry, 1999, 18, 194.	4.3	3
159	An expert system to estimate the pesticide contamination of small streams using benthic macroinvertebrates as bioindicators. Ecological Indicators, 2002, 2, 239-249.	6.3	2
160	Chemicals in the Environment (CITE). Environmental Sciences Europe, 2010, 22, 502-506.	0.1	2
161	Controlling <i>Culex pipiens</i> : antagonists are more efficient than a neonicotinoid insecticide. Journal of Vector Ecology, 2018, 43, 26-35.	1.0	2
162	Opinion of the Scientific Panel on Plant protection products and their Resi-dues on a request from the Commission on the risks associated with an in-crease of the MRL for dieldrin on courgettes. EFSA Journal, 2007, 5, 554.	1.8	2

#	Article	IF	CITATIONS
163	Potential developmental neurotoxicity of deltamethrin - Scientific Opinion of the Panel on Plant Protection Products and their Residues (PPR). EFSA Journal, 2009, 7, 921.	1.8	1
164	Sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants. Ecotoxicology, 2017, 26, 1216-1226.	2.4	1
165	Erratum to "An expert system to estimate the pesticide contamination of small streams using benthic macroinvertebrates as bioindicators Part 2: The knowledge base of LIMPACT― Ecological Indicators, 2003, 2, 377.	6.3	0