Jean Hausser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3986142/publications.pdf

Version: 2024-02-01

		236925	454955
28	7,919	25	30
papers	citations	h-index	g-index
33	33	33	12136
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell, 2010, 141, 129-141.	28.9	2,604
2	MicroRNAs 103 and 107 regulate insulin sensitivity. Nature, 2011, 474, 649-653.	27.8	902
3	<i>miR-375</i> maintains normal pancreatic \hat{l}_{\pm} - and \hat{l}^2 -cell mass. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5813-5818.	7.1	710
4	Identification and consequences of miRNA–target interactions — beyond repression of gene expression. Nature Reviews Genetics, 2014, 15, 599-612.	16.3	556
5	A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nature Methods, 2011, 8, 559-564.	19.0	460
6	Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Research, 2013, 23, 604-615.	5.5	299
7	Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics, 2007, 8, 69.	2.6	282
8	MicroRNA-7a regulates pancreatic \hat{l}^2 cell function. Journal of Clinical Investigation, 2014, 124, 2722-2735.	8.2	251
9	PAR-CliP - A Method to Identify Transcriptome-wide the Binding Sites of RNA Binding Proteins. Journal of Visualized Experiments, 2010, , .	0.3	220
10	Massively Parallel Interrogation of the Effects of Gene Expression Levels on Fitness. Cell, 2016, 166, 1282-1294.e18.	28.9	168
11	MicroRNA binding sites in the coding region of mRNAs: Extending the repertoire of postâ€transcriptional gene regulation. BioEssays, 2014, 36, 617-626.	2.5	156
12	Inferring biological tasks using Pareto analysis of high-dimensional data. Nature Methods, 2015, 12, 233-235.	19.0	145
13	Central dogma rates and the trade-off between precision and economy in gene expression. Nature Communications, 2019, 10, 68.	12.8	140
14	Argonaute 2 Mediates Compensatory Expansion of the Pancreatic \hat{l}^2 Cell. Cell Metabolism, 2014, 19, 122-134.	16.2	139
15	A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nature Methods, 2013, 10, 253-255.	19.0	129
16	Tumour heterogeneity and the evolutionary trade-offs of cancer. Nature Reviews Cancer, 2020, 20, 247-257.	28.4	111
17	Kaposi's Sarcoma Herpesvirus microRNAs Target Caspase 3 and Regulate Apoptosis. PLoS Pathogens, 2011, 7, e1002405.	4.7	108
18	Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C–miRNA complexes and the degradation of miRNA targets. Genome Research, 2009, 19, 2009-2020.	5.5	88

#	Article	IF	CITATION
19	MirZ: an integrated microRNA expression atlas and target prediction resource. Nucleic Acids Research, 2009, 37, W266-W272.	14.5	83
20	Geometry of the Gene Expression Space of Individual Cells. PLoS Computational Biology, 2015, 11, e1004224.	3.2	65
21	Timescales and bottlenecks in miRNAâ€dependent gene regulation. Molecular Systems Biology, 2013, 9, 711.	7.2	54
22	miR-184 Regulates Pancreatic \hat{l}^2 -Cell Function According to Glucose Metabolism. Journal of Biological Chemistry, 2015, 290, 20284-20294.	3.4	53
23	Tumor diversity and the trade-off between universal cancer tasks. Nature Communications, 2019, 10, 5423.	12.8	53
24	MicroRNA-194 is a target of transcription factor 1 (Tcf1, HNF1 \hat{l}_{\pm}) in adult liver and controls expression of frizzled-6. Hepatology, 2012, 55, 98-107.	7.3	48
25	Argonaute CLIP – A method to identify in vivo targets of miRNAs. Methods, 2012, 58, 106-112.	3.8	33
26	An active $\hat{l}^2 \hat{a} \in \mathbb{N}$ actamase is a part of an orchestrated cell wall stress resistance network of $\langle i \rangle$ Bacillus subtilis $\langle i \rangle$ and related rhizosphere species. Environmental Microbiology, 2019, 21, 1068-1085.	3.8	18
27	Linear Superposition and Prediction of Bacterial Promoter Activity Dynamics in Complex Conditions. PLoS Computational Biology, 2014, 10, e1003602.	3.2	16
28	Controls for Phylogeny and Robust Analysis in Pareto Task Inference. Molecular Biology and Evolution, 2022, 39, .	8.9	7