Peter D Pioli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3985912/publications.pdf

Version: 2024-02-01

933447 996975 15 424 10 15 citations h-index g-index papers 18 18 18 829 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Plasma Cells Are Obligate Effectors of Enhanced Myelopoiesis in Aging Bone Marrow. Immunity, 2019, 51, 351-366.e6.	14.3	76
2	EFEMP1 suppresses malignant glioma growth and exerts its action within the tumor extracellular compartment. Molecular Cancer, 2011, 10, 123.	19.2	62
3	Plasma Cells, the Next Generation: Beyond Antibody Secretion. Frontiers in Immunology, 2019, 10, 2768.	4.8	54
4	Do haematopoietic stem cells age?. Nature Reviews Immunology, 2020, 20, 196-202.	22.7	50
5	Lymphoid-Biased Hematopoietic Stem Cells Are Maintained with Age and Efficiently Generate Lymphoid Progeny. Stem Cell Reports, 2019, 12, 584-596.	4.8	45
6	Zfp318 Regulates IgD Expression by Abrogating Transcription Termination within the <i>Ighm/Ighd</i> Locus. Journal of Immunology, 2014, 193, 2546-2553.	0.8	29
7	MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis. Nature Communications, 2016, 7, 12376.	12.8	24
8	Deletion of Snai2 and Snai3 Results in Impaired Physical Development Compounded by Lymphocyte Deficiency. PLoS ONE, 2013, 8, e69216.	2.5	22
9	Bone marrow-induced Mef2c deficiency delays B-cell development and alters the expression of key B-cell regulatory proteins. International Immunology, 2013, 25, 99-115.	4.0	16
10	Snail transcription factors in hematopoietic cell development: A model of functional redundancy. Experimental Hematology, 2014, 42, 425-430.	0.4	13
11	Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs. Immunobiology, 2016, 221, 618-633.	1.9	9
12	Nuclear transit of the intracellular domain of the interferon receptor subunit IFNaR2 requires Stat2 and Irf9. Cellular Signalling, 2008, 20, 1400-1408.	3.6	8
13	Fatal autoimmunity results from the conditional deletion of Snai2 and Snai3. Cellular Immunology, 2015, 295, 1-18.	3.0	8
14	Sequential Proteolytic Processing of an Interferon-Alpha Receptor Subunit by TNF-Alpha Converting Enzyme and Presenilins. Journal of Interferon and Cytokine Research, 2012, 32, 312-325.	1.2	7
15	Intracellular flow cytometry staining of antibody-secreting cells using phycoerythrin-conjugated antibodies: pitfalls and solutions. Antibody Therapeutics, 2022, 5, 151-163.	1.9	1