List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3985840/publications.pdf Version: 2024-02-01

LISE RANKID

#	Article	IF	CITATIONS
1	Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovascular Research, 2001, 51, 372-390.	1.8	258
2	Characterization of SR 121463A, a highly potent and selective, orally active vasopressin V2 receptor antagonist Journal of Clinical Investigation, 1996, 98, 2729-2738.	3.9	233
3	Urea-selective Concentrating Defect in Transgenic Mice Lacking Urea Transporter UT-B. Journal of Biological Chemistry, 2002, 277, 10633-10637.	1.6	194
4	A standard nomenclature for structures of the kidney. Kidney International, 1988, 33, 1-7.	2.6	180
5	Urea and urine concentrating ability: new insights from studies in mice. American Journal of Physiology - Renal Physiology, 2005, 288, F881-F896.	1.3	179
6	Vasopressin: a novel target for the prevention and retardation of kidney disease?. Nature Reviews Nephrology, 2013, 9, 223-239.	4.1	179
7	Vasopressin: physiology, assessment and osmosensation. Journal of Internal Medicine, 2017, 282, 284-297.	2.7	171
8	Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmö Diet and Cancer Study cardiovascular cohort. International Journal of Obesity, 2013, 37, 598-603.	1.6	157
9	Nighttime Blood Pressure and Nocturnal Dipping Are Associated With Daytime Urinary Sodium Excretion in African Subjects. Hypertension, 2008, 51, 891-898.	1.3	153
10	Sex difference in urine concentration across differing ages, sodium intake, and level of kidney disease. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R700-R705.	0.9	149
11	Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: Study in vasopressin-deficient Brattleboro rats. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10397-10402.	3.3	128
12	A Case for Water in the Treatment of Polycystic Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 1140-1150.	2.2	128
13	Low Water Intake and Risk for New-Onset Hyperglycemia. Diabetes Care, 2011, 34, 2551-2554.	4.3	127
14	Vasopressin increases urinary albumin excretion in rats and humans: involvement of V2 receptors and the renin-angiotensin system. Nephrology Dialysis Transplantation, 2003, 18, 497-506.	0.4	120
15	Vasopressin-V2 Receptor Stimulation Reduces Sodium Excretion in Healthy Humans. Journal of the American Society of Nephrology: JASN, 2005, 16, 1920-1928.	3.0	117
16	Comparison Between Copeptin and Vasopressin in a Population From the Community and in People With Chronic Kidney Disease. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 4656-4663.	1.8	110
17	Chronic Exposure to Vasopressin Upregulates ENaC and Sodium Transport in the Rat Renal Collecting Duct and Lung. Hypertension, 2001, 38, 1143-1149.	1.3	107
18	Expression of type 1 angiotensin II receptor subtypes and angiotensin II-induced calcium mobilization along the rat nephron Journal of the American Society of Nephrology: JASN, 1997, 8, 1658-1667.	3.0	106

#	Article	IF	CITATIONS
19	Hydration and Chronic Kidney Disease Progression: A Critical Review of the Evidence. American Journal of Nephrology, 2016, 43, 281-292.	1.4	104
20	Vasopressin V2 receptors, ENaC, and sodium reabsorption: a risk factor for hypertension?. American Journal of Physiology - Renal Physiology, 2010, 299, F917-F928.	1.3	100
21	Urinary concentrating ability: insights from comparative anatomy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1985, 249, R643-R666.	0.9	95
22	Effect of water intake on the progression of chronic renal failure in the 5/6 nephrectomized rat. American Journal of Physiology - Renal Physiology, 1990, 258, F973-F979.	1.3	95
23	Vasopressin and Diabetes mellitus. Nephron, 2001, 87, 8-18.	0.9	94
24	Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrology Dialysis Transplantation, 2005, 20, 1984-1988.	0.4	94
25	Vasopressin increases glomerular filtration rate in conscious rats through its antidiuretic action Journal of the American Society of Nephrology: JASN, 1996, 7, 842-851.	3.0	91
26	Protein- and diabetes-induced glomerular hyperfiltration: role of glucagon, vasopressin, and urea. American Journal of Physiology - Renal Physiology, 2015, 309, F2-F23.	1.3	88
27	Sodium Excretion in Response to Vasopressin and Selective Vasopressin Receptor Antagonists. Journal of the American Society of Nephrology: JASN, 2008, 19, 1721-1731.	3.0	87
28	Evidence for distinct vascular and tubular urea transporters in the rat kidney Journal of the American Society of Nephrology: JASN, 1996, 7, 852-860.	3.0	83
29	Lack of UT-B in vasa recta and red blood cells prevents urea-induced improvement of urinary concentrating ability. American Journal of Physiology - Renal Physiology, 2004, 286, F144-F151.	1.3	79
30	Ethnic Differences in Urine Concentration: Possible Relationship to Blood Pressure. Clinical Journal of the American Society of Nephrology: CJASN, 2007, 2, 304-312.	2.2	73
31	Plasma Copeptin and Renal Outcomes in Patients With Type 2 Diabetes and Albuminuria. Diabetes Care, 2013, 36, 3639-3645.	4.3	73
32	Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia, 2015, 58, 1081-1090.	2.9	70
33	Selective ADH-induced hypertrophy of the medullary thick ascending limb in Brattleboro rats. Kidney International, 1985, 28, 456-466.	2.6	69
34	Contribution of vasopressin to progression of chronic renal failure: Study in Brattleboro rats. Life Sciences, 1999, 65, 991-1004.	2.0	69
35	Diabetes-induced albuminuria: role of antidiuretic hormone as revealed by chronic V2 receptor antagonism in rats. Nephrology Dialysis Transplantation, 2003, 18, 1755-1763.	0.4	69
36	Rehydration with soft drink-like beverages exacerbates dehydration and worsens dehydration-associated renal injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R57-R65.	0.9	68

LISE BANKIR

#	Article	IF	CITATIONS
37	Direct and indirect cost of urea excretion. Kidney International, 1996, 49, 1598-1607.	2.6	67
38	New insights into urea and glucose handling by the kidney, and the urine concentrating mechanism. Kidney International, 2012, 81, 1179-1198.	2.6	66
39	Adaptation of the rat kidney to altered water intake and urine concentration. Pflugers Archiv European Journal of Physiology, 1988, 412, 42-53.	1.3	65
40	Adaptation of the kidney to protein intake and to urine concentrating activity: Similar consequences in health and CRF. Kidney International, 1995, 47, 7-24.	2.6	64
41	Metabolic and Kidney Diseases in the Setting of Climate Change, Water Shortage, and Survival Factors. Journal of the American Society of Nephrology: JASN, 2016, 27, 2247-2256.	3.0	64
42	Plasma Copeptin, <i>AVP</i> Gene Variants, and Incidence of Type 2 Diabetes in a Cohort From the Community. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2432-2439.	1.8	58
43	Hyperosmolarity drives hypertension and CKD—water and salt revisited. Nature Reviews Nephrology, 2014, 10, 415-420.	4.1	57
44	Extracellular cAMP inhibits proximal reabsorption: are plasma membrane cAMP receptors involved?. American Journal of Physiology - Renal Physiology, 2002, 282, F376-F392.	1.3	55
45	Plasma Copeptin, Kidney Outcomes, Ischemic Heart Disease, and All-Cause Mortality in People With Long-standing Type 1 Diabetes. Diabetes Care, 2016, 39, 2288-2295.	4.3	51
46	Role of the urinary concentrating process in the renal effects of high protein intake. Kidney International, 1988, 34, 4-12.	2.6	50
47	Influence of the level of hydration on the renal response to a protein meal. Kidney International, 1992, 42, 1207-1216.	2.6	50
48	Massive reduction of urea transporters in remnant kidney and brain of uremic rats. Kidney International, 2000, 58, 1202-1210.	2.6	50
49	Metabolic Changes in Summer Active and Anuric Hibernating Free-Ranging Brown Bears (Ursus) Tj ETQq1 1 0.784	4314 rgBT 1.1	/Qyerlock 10
50	Measurement of glomerular blood flow in rabbits and rats: Erroneous findings with 15-µm microspheres. Kidney International, 1979, 15, 126-133.	2.6	46
51	Quick isolation of rat medullary thick ascending limbs. Pflugers Archiv European Journal of Physiology, 1986, 407, 228-234.	1.3	46
52	Renal synthesis of arginine in chronic renal failure: In vivo and in vitro studies in rats with 5/6 nephrectomy. Kidney International, 1993, 44, 676-683.	2.6	46
53	Renal urea transporters. Direct and indirect regulation by vasopressin. Experimental Physiology, 2000, 85, 243s-252s.	0.9	45
54	Is the process of urinary urea concentration responsible for a high glomerular filtration rate?. Journal of the American Society of Nephrology: JASN, 1993, 4, 1091-1103.	3.0	45

LISE BANKIR

#	Article	IF	CITATIONS
55	Aquaporin-2 and urea transporter-A1 are up-regulated in rats with Type I diabetes mellitus. Diabetologia, 2001, 44, 637-645.	2.9	44
56	Role of thin descending limb urea transport in renal urea handling and the urine concentrating mechanism. American Journal of Physiology - Renal Physiology, 2011, 301, F1251-F1259.	1.3	44
57	Treatment of the Syndrome of Inappropriate Secretion of Antidiuretic Hormone with Urea in Critically Ill Patients. American Journal of Nephrology, 2012, 35, 265-270.	1.4	44
58	Renal tubular and vascular urea transporters: influence of antidiuretic hormone on messenger RNA expression in Brattleboro rats Journal of the American Society of Nephrology: JASN, 1998, 9, 1359-1366.	3.0	44
59	The vascular organization of the kidney of Psammomys obesus. Anatomy and Embryology, 1979, 155, 149-160.	1.5	43
60	Plasma Copeptin and Decline in Renal Function in a Cohort from the Community: The Prospective D.E.S.I.R. Study. American Journal of Nephrology, 2015, 42, 107-114.	1.4	43
61	Effects of hydration on plasma copeptin, glycemia and gluco-regulatory hormones: a water intervention in humans. European Journal of Nutrition, 2019, 58, 315-324.	1.8	43
62	Long-term effects of vasopressin on the subcellular localization of ENaC in the renal collecting system. Kidney International, 2006, 69, 1024-1032.	2.6	41
63	Ethnic Differences in Renal Responses to Furosemide. Hypertension, 2008, 52, 241-248.	1.3	41
64	Association of a Low-Protein Diet With Slower Progression of CKD. Kidney International Reports, 2018, 3, 105-114.	0.4	41
65	Renal function and concentrating ability in a desert rodent: The gundi(Ctenodactylus vali). Pflugers Archiv European Journal of Physiology, 1981, 390, 138-144.	1.3	40
66	Differences in Rat Kidney Morphology between Males, Females and Testosterone-Treated Females. Kidney and Blood Pressure Research, 1991, 14, 92-102.	0.9	40
67	Cyclic AMP is a hepatorenal link influencing natriuresis and contributing to glucagon-induced hyperfiltration in rats Journal of Clinical Investigation, 1996, 98, 2251-2258.	3.9	39
68	Localization of arginine synthesis along rat nephron. American Journal of Physiology - Renal Physiology, 1990, 259, F916-F923.	1.3	37
69	Effect of high protein intake on sodium, potassium-dependent adenosine triphosphatase activity in the thick ascending limb of Henle's loop in the rat. Clinical Science, 1988, 74, 319-329.	1.8	35
70	2 The role of the kidney in the maintenance of water balance. Bailliere's Clinical Endocrinology and Metabolism, 1989, 3, 249-311.	1.0	35
71	Integrated Function of Urea Transporters in the Mammalian Kidney. Nephron Experimental Nephrology, 1998, 6, 471-479.	2.4	35
72	Mutation of the Na+-K+-2Clâ^'cotransporter NKCC2 in mice is associated with severe polyuria and a urea-selective concentrating defect without hyperreninemia. American Journal of Physiology - Renal Physiology, 2010, 298, F1405-F1415.	1.3	35

#	Article	IF	CITATIONS
73	Functional adaptation of thick ascending limb and internephron heterogeneity to urine concentration. Kidney International, 1987, 31, 549-555.	2.6	34
74	Vasopressin-Dependent Kidney Hypertrophy: Role of Urinary Concentration in Protein-Induced Hypertrophy and in the Progression of Chronic Renal Failure. American Journal of Kidney Diseases, 1991, 17, 661-665.	2.1	34
75	Low-dose vasopressin restores diuresis both in patients with hepatorenal syndrome and in anuric patients with end-stage heart failure. Journal of Internal Medicine, 1999, 246, 183-190.	2.7	34
76	Papillary plasma flow in rats. Pflugers Archiv European Journal of Physiology, 1982, 394, 211-216.	1.3	33
77	Glucagon Receptor Gene Mutation (Gly40Ser) in Human Essential Hypertension. Hypertension, 1999, 34, 15-17.	1.3	32
78	Glucagon actions on the kidney revisited: possible role in potassium homeostasis. American Journal of Physiology - Renal Physiology, 2016, 311, F469-F486.	1.3	32
79	Acute and chronic hyperglycemic effects of vasopressin in normal rats: involvement of V _{1A} receptors. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E127-E135.	1.8	32
80	Relationship between Sodium Intake and Water Intake: The False and the True. Annals of Nutrition and Metabolism, 2017, 70, 51-61.	1.0	32
81	Plasma copeptin and chronic kidney disease risk in 3 European cohorts from the general population. JCI Insight, 2018, 3, .	2.3	32
82	Collection of Lymph from Kidneys Homotransplanted in Man: Cell Transformation in vivo. Nature, 1971, 232, 633-634.	13.7	31
83	Urine Osmolarity and Risk of Dialysis Initiation in a Chronic Kidney Disease Cohort – a Possible Titration Target?. PLoS ONE, 2014, 9, e93226.	1.1	31
84	Morphometric analysis of kidney hypertrophy in rats after chronic potassium depletion. American Journal of Physiology - Renal Physiology, 1992, 262, F656-F667.	1.3	30
85	Radioactive microsphere distribution and single glomerular blood flow in the normal rabbit kidney. Pflugers Archiv European Journal of Physiology, 1973, 342, 111-123.	1.3	29
86	A standard nomenclature for structures of the kidney. Pflugers Archiv European Journal of Physiology, 1988, 411, 113-120.	1.3	28
87	Influence of glucagon on GFR and on urea and electrolyte excretion: direct and indirect effects. American Journal of Physiology - Renal Physiology, 1995, 269, F225-F235.	1.3	28
88	Selective blockade of vasopressin V2 receptors reveals significant V2â€mediated water reabsorption in Brattleboro rats with diabetes insipidus. Nephrology Dialysis Transplantation, 2001, 16, 725-734.	0.4	28
89	Low urine flow reduces the capacity to excrete a sodium load in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1726-R1733.	0.9	27
90	Urea Transporter UT-B Deletion Induces DNA Damage and Apoptosis in Mouse Bladder Urothelium. PLoS ONE, 2013, 8, e76952.	1.1	27

#	Article	IF	CITATIONS
91	Effects of glucagon on glomerular filtration rate and urea and water excretion. American Journal of Physiology - Renal Physiology, 1992, 263, F24-F36.	1.3	26
92	Antinatriuretic Effect of Vasopressin in Humans Is Amiloride Sensitive, Thus ENaC Dependent. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 753-759.	2.2	26
93	Influence of chronic ADH treatment on adenylate cyclase and ATPase activity in distal nephron segments of diabetes insipidus Brattleboro rats. Pflugers Archiv European Journal of Physiology, 1985, 405, 216-222.	1.3	25
94	ADH-INDUCED CHANGES IN THE EPITHELIUM OF THE THICK ASCENDING LIMB IN BRATTLEBORO RATS WITH HEREDITARY HYPOTHALAMIC DIABETES INSIPIDUS. Annals of the New York Academy of Sciences, 1982, 394, 424-434.	1.8	24
95	Stimulation of tubular reabsorption of magnesium and calcium by antidiuretic hormone in conscious rats. Pflugers Archiv European Journal of Physiology, 1984, 402, 458-464.	1.3	24
96	Altered PGE2 production by glomeruli and papilla of rats with hereditary diabetes insipidus. Prostaglandins, 1980, 20, 349-365.	1.2	23
97	Erythrocyte permeability to urea and water: comparative study in rodents, ruminants, carnivores, humans, and birds. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2011, 181, 65-72.	0.7	23
98	Medullary and cortical thick ascending limb: similarities and differences. American Journal of Physiology - Renal Physiology, 2020, 318, F422-F442.	1.3	23
99	Papillary plasma flow in rats. Pflugers Archiv European Journal of Physiology, 1983, 398, 253-258.	1.3	22
100	mRNA Expression of Renal Urea Transporters in Normal and Brattleboro Rats: Effect of Dietary Protein Intake. Nephron Experimental Nephrology, 1999, 7, 44-51.	2.4	22
101	Urea and urine concentrating ability in mice lacking AQP1 and AQP3. American Journal of Physiology - Renal Physiology, 2006, 291, F429-F438.	1.3	22
102	Tamm-Horsfall Protein Excretion during Chronic Alterations in Urinary Concentration and Protein Intake in the Rat. Kidney and Blood Pressure Research, 1991, 14, 236-245.	0.9	21
103	Water intake and progression of chronic kidney disease: the CKD-REIN cohort study. Nephrology Dialysis Transplantation, 2022, 37, 730-739.	0.4	21
104	Vasopressin and urinary concentrating activity in diabetes mellitus. Diabetes and Metabolism, 1999, 25, 213-22.	1.4	21
105	An early urea-selective urine-concentrating defect in ADPKD. Nature Reviews Nephrology, 2012, 8, 437-439.	4.1	20
106	THE MEASUREMENT OF GLOMERULAR BLOOD FLOW IN THE RAT KIDNEY: INFLUENCE OF MICROSPHERE SIZE. Clinical and Experimental Pharmacology and Physiology, 1978, 5, 559-565.	0.9	19
107	Vasopressin and diabetic nephropathy. Current Opinion in Nephrology and Hypertension, 2017, 26, 311-318.	1.0	18
108	Validation of Surrogates of Urine Osmolality in Population Studies. American Journal of Nephrology, 2017, 46, 26-36.	1.4	18

#	Article	IF	CITATIONS
109	Production of Urea from Arginine in Pars recta and Collecting Duct of the Rat Kidney. Kidney and Blood Pressure Research, 1989, 12, 302-312.	0.9	17
110	Race, sex, and the regulation of urine osmolality: observations made during water deprivation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R977-R980.	0.9	17
111	Localization of urea and ornithine production along mouse and rabbit nephrons: functional significance. American Journal of Physiology - Renal Physiology, 1992, 263, F878-F885.	1.3	16
112	Antagonism of vasopressin V2 receptor improves albuminuria at the early stage of diabetic nephropathy in a mouse model of type 2 diabetes. Journal of Diabetes and Its Complications, 2017, 31, 929-932.	1.2	16
113	Glucagon revisited: Coordinated actions on the liver and kidney. Diabetes Research and Clinical Practice, 2018, 146, 119-129.	1.1	16
114	Arginine vasopressin gene regulation in the homozygous Brattleboro rat Journal of Clinical Investigation, 1990, 86, 14-16.	3.9	16
115	Anatomical and functional heterogeneity of nephrons in the rabbit: Microdissection studies and SNGFR measurements. Pflugers Archiv European Journal of Physiology, 1976, 366, 89-93.	1.3	14
116	ADH-dependent nephron heterogeneity in rats with hereditary hypothalamic diabetes insipidus. American Journal of Physiology - Renal Physiology, 1981, 240, F372-F380.	1.3	14
117	Methods for measurement of renal blood flow in man. Seminars in Nuclear Medicine, 1974, 4, 39-50.	2.5	12
118	Effect of long- and short-term antidiuretic hormone availability on internephron heterogeneity in the adult rat. American Journal of Physiology - Renal Physiology, 1984, 246, F879-F888.	1.3	12
119	Vasopressin is involved in renal effects of high-protein diet: study in homozygous Brattleboro rats. American Journal of Physiology - Renal Physiology, 1991, 260, F96-F100.	1.3	12
120	Urinary Sodium Concentration Is an Independent Predictor of All-Cause and Cardiovascular Mortality in a Type 2 Diabetes Cohort Population. Journal of Diabetes Research, 2017, 2017, 1-10.	1.0	12
121	Vascular contributions to pathogenesis of acute renal failure. Renal Failure, 1998, 20, 663-677.	0.8	11
122	Effect of salt and water intake on epithelial sodium channel mRNA abundance in the kidney of salt-sensitive Sabra rats. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 963-965.	0.9	11
123	HOMOZYGOUS BRATTLEBORO RATS LACK NORMAL NEPHRON HETEROGENEITY AS A CONSEQUENCE OF THEIR URINE CONCENTRATING DEFECT. Annals of the New York Academy of Sciences, 1982, 394, 524-528.	1.8	10
124	Effects of osmolality and antidiuretic hormone on prostaglandin synthesis by renal papilla. Pflugers Archiv European Journal of Physiology, 1984, 400, 96-99.	1.3	10
125	Contribution of leucine to oxidative metabolism of the rat medullary thick ascending limb. Pflugers Archiv European Journal of Physiology, 1988, 411, 676-680.	1.3	10
126	Reduced Insulin Secretion and Nocturnal Dipping of Blood Pressure Are Associated with a Disturbed Circadian Pattern of Urine Excretion in Metabolic Syndrome. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E929-E933.	1.8	10

#	Article	IF	CITATIONS
127	Impacts of active urea secretion into pars recta on urine concentration and urea excretion rate. Physiological Reports, 2013, 1, .	0.7	10
128	Differential circadian pattern of water and Na excretion rates in the metabolic syndrome. Chronobiology International, 2014, 31, 861-867.	0.9	10
129	Active Urea Transport in Lower Vertebrates and Mammals. Sub-Cellular Biochemistry, 2014, 73, 193-226.	1.0	10
130	Vasopressin and urinary concentration: additional risk factors in the progression of chronic renal failure. American Journal of Kidney Diseases, 1991, 17, 20-6.	2.1	9
131	Thick ascending limb–anatomy and function: role in urine concentrating mechanisms. Advances in Nephrology From the Necker Hospital, 1987, 16, 69-102.	0.2	9
132	Influence of plasma amino acid level on vasopressin secretion. Diabetes and Metabolism, 2003, 29, 352-361.	1.4	8
133	Improved protocols for the study of urinary electrolyte excretion and blood pressure in rodents: use of gel food and stepwise changes in diet composition. American Journal of Physiology - Renal Physiology, 2018, 314, F1129-F1137.	1.3	8
134	Does Tamm–Horsfall protein–uric acid binding play a significant role in urate homeostasis?. Nephrology Dialysis Transplantation, 2006, 21, 2938-2942.	0.4	7
135	Type 1 Angiotensin II Receptor Subtypes in Kidney of Normal and Salt-Sensitive Hypertensive Rats. Hypertension, 1996, 27, 392-398.	1.3	7
136	Cyclic AMP-phosphodiesterases inhibitor improves sodium excretion in rats with cirrhosis and ascites. Liver International, 2005, 25, 403-409.	1.9	6
137	What can copeptin tell us in patients with autosomal dominant polycystic disease?. Kidney International, 2019, 96, 19-22.	2.6	6
138	Urine Osmolarity and Risk of Dialysis Initiation in a CKD Cohort. Annals of Nutrition and Metabolism, 2015, 66, 14-17.	1.0	4
139	Organization of the Medullary Circulation: Functional Implications. , 1984, , 84-106.		4
140	Renal potassium handling in carriers of the Gly40Ser mutation of the glucagon receptor suggests a role for glucagon in potassium homeostasis. Physiological Reports, 2018, 6, e13661.	0.7	3
141	Vaptans or voluntary increased hydration to protect the kidney: how do they compare?. Nephrology Dialysis Transplantation, 2023, 38, 562-574.	0.4	3
142	Vasopressin and water conservation: The good and the evil. American Journal of Kidney Diseases, 1997, 30, xliv-xlvi.	2.1	2
143	Water and Kidney Physiology. Nutrition Today, 2013, 48, S13-S17.	0.6	2
144	Could an intrarenal Cori cycle participate in the urinary concentrating mechanism?. American Journal of Physiology - Renal Physiology, 2021, 321, F352-F353.	1.3	2

#	ARTICLE	IF	CITATIONS
145	Possible role of the thick ascending limb and of the urine concentrating mechanism in the protein-induced increase in GFR and kidney mass. Kidney International, Supplement, 1987, 22, S57-61.	0.1	2
146	Regulation by sodium intake of type 1 angiotensin II receptor mRNAs in the kidney of Sabra rats. Journal of Hypertension, 2000, 18, 1097-1105.	0.3	1
147	Low hydration status may be associated with insulin resistance and fat distribution: analysis of the Korea National Health and Nutrition Examination Survey (KNHANES) 2008–2010. British Journal of Nutrition, 2020, 124, 199-208.	1.2	1
148	Role of Urine Concentration in the Progression of Renal Failure1. , 1993, , 216-225.		0
149	Response to Nocturnal Blood Pressure Fall Changes in Correlation With Urinary Sodium Excretion. Hypertension, 2008, 52, .	1.3	0
150	ARE RACIAL DIFFERENCES IN SODIUM AND WATER HANDLING AT NIGHT RELATED TO DIFFERENCES IN THE SUSCEPTIBILITY TO HYPERTENSION?. Journal of Hypertension, 2004, 22, S216-S217.	0.3	0
151	Hydratation et fonction rénale. Medecine Et Nutrition, 2013, 49, 21-26.	0.1	0
152	Ricerca di Soggetti Affetti da "iperazotemia Familiare non Accompagnata da Un'insufficienza Renale― Giornale De Techniche Nefrologiche & Dialitiche, 2016, 28, 300-301.	0.1	0