
Matti Marklund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3985695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Contribution of Major Food Categories and Companies to Household Purchases of Added Sugar in Australia. Journal of the Academy of Nutrition and Dietetics, 2022, 122, 345-353.e3.	0.4	8
2	<i>Trans</i> Fatty Acid Biomarkers and Incident Type 2 Diabetes: Pooled Analysis of 12 Prospective Cohort Studies in the Fatty Acids and Outcomes Research Consortium (FORCE). Diabetes Care, 2022, 45, 854-863.	4.3	8
3	Influence of Heating during Cooking on Trans Fatty Acid Content of Edible Oils: A Systematic Review and Meta-Analysis. Nutrients, 2022, 14, 1489.	1.7	10
4	PUFA ω-3 and ω-6 biomarkers and sleep: a pooled analysis of cohort studies on behalf of the Fatty Acids and Outcomes Research Consortium (FORCE). American Journal of Clinical Nutrition, 2022, 115, 864-876.	2.2	1
5	Salt substitution: opportunities and challenges for nephrology. Nature Reviews Nephrology, 2022, 18, 539-540.	4.1	3
6	Estimating the potential impact of Australia's reformulation programme on households' sodium purchases. BMJ Nutrition, Prevention and Health, 2021, 4, 49-58.	1.9	14
7	The impact of baseline potassium intake on the dose–response relation between sodium reduction and blood pressure change: systematic review and meta-analysis of randomized trials. Journal of Human Hypertension, 2021, 35, 946-957.	1.0	3
8	n-3 Fatty Acid Biomarkers and Incident Type 2 Diabetes: An Individual Participant-Level Pooling Project of 20 Prospective Cohort Studies. Diabetes Care, 2021, 44, 1133-1142.	4.3	50
9	Effects of a reduced-sodium added-potassium salt substitute on blood pressure in rural Indian hypertensive patients: a randomized, double-blind, controlled trial. American Journal of Clinical Nutrition, 2021, 114, 185-193.	2.2	36
10	HOW MANY ADDITIONAL PHYSICIANS ARE NEEDED FOR HYPERTENSION TREATMENT IN INDIA?. Journal of Hypertension, 2021, 39, e85.	0.3	0
11	Sodium Content and Labelling Completeness of Packaged Foods and Beverages in Kenya. Nutrients, 2021, 13, 1385.	1.7	4
12	Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies. Nature Communications, 2021, 12, 2329.	5.8	132
13	Abstract 026: Biomarkers Of Dairy Fat Intake Associated With Lower Cardiovascular Disease Risk: A Cohort Study And Meta-analysis. Circulation, 2021, 143, .	1.6	1
14	Healthy Food Prescription Programs and their Impact on Dietary Behavior and Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis. Advances in Nutrition, 2021, 12, 1944-1956.	2.9	57
15	Availability, Formulation, Labeling, and Price of Low-sodium Salt Worldwide: Environmental Scan. JMIR Public Health and Surveillance, 2021, 7, e27423.	1.2	28
16	Circulating fatty acids and risk of gestational diabetes mellitus: prospective analyses in China. European Journal of Endocrinology, 2021, 185, 87-97.	1.9	28
17	Health Impact and Cost-Effectiveness of Achieving the National Salt and Sugar Reduction Initiative Voluntary Sugar Reduction Targets in the United States: A Microsimulation Study. Circulation, 2021, 144, 1362-1376.	1.6	17
18	Barriers and Facilitators to Implementing Reduced-Sodium Salts as a Population-Level Intervention: A Qualitative Study. Nutrients, 2021, 13, 3225.	1.7	7

Matti Marklund

#	Article	IF	CITATIONS
19	Biomarkers of dairy fat intake, incident cardiovascular disease, and all-cause mortality: A cohort study, systematic review, and meta-analysis. PLoS Medicine, 2021, 18, e1003763.	3.9	39
20	Core Strategies to Increase the Uptake and Use of Potassium-Enriched Low-Sodium Salt. Nutrients, 2021, 13, 3203.	1.7	8
21	An Innovative Machine Learning Approach to Predict the Dietary Fiber Content of Packaged Foods. Nutrients, 2021, 13, 3195.	1.7	14
22	The estimated health impact of sodium reduction through food reformulation in Australia: A modeling study. PLoS Medicine, 2021, 18, e1003806.	3.9	18
23	Estimating the potential impact of the Australian government's reformulation targets on household sugar purchases. International Journal of Behavioral Nutrition and Physical Activity, 2021, 18, 138.	2.0	3
24	Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 2020, 97, 42-61.	2.6	260
25	Association between carbohydrate intake and fatty acids in the de novo lipogenic pathway in serum phospholipids and adipose tissue in a population of Swedish men. European Journal of Nutrition, 2020, 59, 2089-2097.	1.8	9
26	A Systematic Review of the Sources of Dietary Salt Around the World. Advances in Nutrition, 2020, 11, 677-686.	2.9	121
27	Potassium-Enriched Salt Substitutes as a Means to Lower Blood Pressure. Hypertension, 2020, 75, 266-274.	1.3	84
28	Estimated Health Benefits, Costs, and Cost-Effectiveness of Eliminating Industrial Trans-Fatty acids in Australia. Current Developments in Nutrition, 2020, 4, nzaa064_010.	0.1	0
29	Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Medicine, 2020, 17, e1003102.	3.9	38
30	Health Impact and Cost-Effectiveness of Volume, Tiered, and Absolute Sugar Content Sugar-Sweetened Beverage Tax Policies in the United States. Circulation, 2020, 142, 523-534.	1.6	35
31	Is salt substitution ready for prime time?. Nature Reviews Cardiology, 2020, 17, 325-326.	6.1	3
32	Contribution of major food companies and their products to household dietary sodium purchases in Australia. International Journal of Behavioral Nutrition and Physical Activity, 2020, 17, 81.	2.0	9
33	Estimated population wide benefits and risks in China of lowering sodium through potassium enriched salt substitution: modelling study. BMJ, The, 2020, 369, m824.	3.0	68
34	Interim effects of salt substitution on urinary electrolytes and blood pressure in the China Salt Substitute and Stroke Study (SSaSS). American Heart Journal, 2020, 221, 136-145.	1.2	20
35	Estimated health benefits, costs, and cost-effectiveness of eliminating industrial trans-fatty acids in Australia: A modelling study. PLoS Medicine, 2020, 17, e1003407.	3.9	16
36	Abstract P182: Workforce Reforms And Task Sharing To Improve Hypertension Treatment Coverage In India. Hypertension, 2020, 76, .	1.3	0

Matti Marklund

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 17, e1003407.		0
38	Title is missing!. , 2020, 17, e1003407.		0
39	Title is missing!. , 2020, 17, e1003407.		0
40	Title is missing!. , 2020, 17, e1003407.		0
41	Title is missing!. , 2020, 17, e1003407.		0
42	Fish consumption for cardiovascular health: benefits from long-chain omega-3 fatty acids versus potential harms due to mercury. Heart, 2019, 105, 1384-1385.	1.2	12
43	Trans Fatty Acid Biomarkers and Incident Type 2 Diabetes: Pooled Analysis from 10 Prospective Cohort Studies in the Fatty Acids and Outcome Research Consortium (FORCE) (OR33-02-19). Current Developments in Nutrition, 2019, 3, nzz039.OR33-02-19.	0.1	3
44	Benefits and Risks of Lowering Sodium Through Potassium-enriched Salt Substitution for Patients with Chronic Kidney Disease in China: A Modelling Study (OR25-05-19). Current Developments in Nutrition, 2019, 3, nzz051.OR25-05-19.	0.1	0
45	Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality. Circulation, 2019, 139, 2422-2436.	1.6	199
46	Associations of circulating very-long-chain saturated fatty acids and incident type 2 diabetes: a pooled analysis of prospective cohort studies. American Journal of Clinical Nutrition, 2019, 109, 1216-1223.	2.2	39
47	Abstract P294: Estimated Benefits and Risks of Lowering Sodium Intake With Potassium-based Salt Substitutes in China: a Modelling Study. Circulation, 2019, 139, .	1.6	0
48	Abstract 034: Omega-3 Fatty Acid Biomarkers and Incident Type 2 Diabetes: An Individual Participant-level Pooling Project of 20 Prospective Cohort Studies. Circulation, 2019, 139, .	1.6	0
49	Circulating fatty acids in relation to alcohol consumption: Cross-sectional results from a cohort of 60-year-old men and women. Clinical Nutrition, 2018, 37, 2001-2010.	2.3	10
50	Genome-Wide Association Studies of Estimated Fatty Acid Desaturase Activity in Serum and Adipose Tissue in Elderly Individuals: Associations with Insulin Sensitivity. Nutrients, 2018, 10, 1791.	1.7	18
51	Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Medicine, 2018, 15, e1002670.	3.9	143
52	Milk fat biomarkers and cardiometabolic disease. Current Opinion in Lipidology, 2017, 28, 46-51.	1.2	51
53	Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39â€~740 adults from 20 prospective cohort studies. Lancet Diabetes and Endocrinology,the, 2017, 5, 965-974.	5.5	213
54	Fatty Acid Proportions in Plasma Cholesterol Esters and Phospholipids Are Positively Correlated in Various Swedish Populations. Journal of Nutrition, 2017, 147, 2118-2125.	1.3	10

#	Article	IF	CITATIONS
55	Serum Fatty Acids, Desaturase Activities and Abdominal Obesity – A Population-Based Study of 60-Year Old Men and Women. PLoS ONE, 2017, 12, e0170684.	1.1	33
56	A Healthy Nordic Diet Alters the Plasma Lipidomic Profile in Adults with Features of Metabolic Syndrome in a Multicenter Randomized Dietary Intervention. Journal of Nutrition, 2016, 146, 662-672.	1.3	68
57	Reply to A Abbasi. American Journal of Clinical Nutrition, 2016, 104, 1725-1726.	2.2	Ο
58	Reply to J-B Qin et al American Journal of Clinical Nutrition, 2016, 104, 1723-1724.	2.2	0
59	Plasma alkylresorcinols, biomarkers of whole-grain wheat and rye intake, and risk of type 2 diabetes in Scandinavian men and women. American Journal of Clinical Nutrition, 2016, 104, 88-96.	2.2	51
60	Ϊ‰-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease. JAMA Internal Medicine, 2016, 176, 1155.	2.6	326
61	Comparison of plasma alkylresorcinols (AR) and urinary AR metabolites as biomarkers of compliance in a short-term, whole-grain intervention study. European Journal of Nutrition, 2016, 55, 1235-1244.	1.8	21
62	Discovery of urinary biomarkers of whole grain rye intake in freeâ€living subjects using nontargeted LCâ€MS metabolite profiling. Molecular Nutrition and Food Research, 2015, 59, 2315-2325.	1.5	35
63	Polyunsaturated Fat Intake Estimated by Circulating Biomarkers and Risk of Cardiovascular Disease and All-Cause Mortality in a Population-Based Cohort of 60-Year-Old Men and Women. Circulation, 2015, 132, 586-594.	1.6	35
64	Role of a prudent breakfast in improving cardiometabolic risk factors in subjects with hypercholesterolemia: A randomized controlled trial. Clinical Nutrition, 2015, 34, 20-26.	2.3	27
65	Genomeâ€Wide Association Studies (GWAS) of Estimated Fatty Acid Desaturase Activity in Serum and Adipose Tissue: Relationships with Insulin Sensitivity. FASEB Journal, 2015, 29, 248.1.	0.2	0
66	Alkylresorcinols in Rye: Occurrence, Pharmacokinetics, and Bioavailability. , 2014, , 85-108.		3
67	Alkylresorcinols and Their Metabolites as Biomarkers of Whole-Grain Rye and Wheat Intake. , 2014, , 159-187.		1
68	Simultaneous Pharmacokinetic Modeling of Alkylresorcinols and Their Main Metabolites Indicates Dual Absorption Mechanisms and Enterohepatic Elimination in Humans. Journal of Nutrition, 2014, 144, 1674-1680.	1.3	15
69	A Dietary Biomarker Approach Captures Compliance and Cardiometabolic Effects of a Healthy Nordic Diet in Individuals with Metabolic Syndrome. Journal of Nutrition, 2014, 144, 1642-1649.	1.3	39
70	An update on alkylresorcinols – Occurrence, bioavailability, bioactivity and utility as biomarkers. Journal of Functional Foods, 2014, 7, 77-89.	1.6	60
71	Hepatic biotransformation of alkylresorcinols is mediated via cytochrome P450 and β-oxidation: A proof of concept study. Food Chemistry, 2013, 139, 925-930.	4.2	19
72	Alkylresorcinol metabolites in urine correlate with the intake of whole grains and cereal fibre in free-living Swedish adults. British Journal of Nutrition, 2013, 109, 129-136.	1.2	26

MATTI MARKLUND

#	Article	IF	CITATIONS
73	Chain Length of Dietary Alkylresorcinols Affects Their In Vivo Elimination Kinetics in Rats. Journal of Nutrition, 2013, 143, 1573-1578.	1.3	12
74	Hepatic biotransformation of alkylresorcinols is mediated via cytochrome P450 and βâ€oxidation FASEB Journal, 2013, 27, 125.2.	0.2	0
75	A pilot study examining the application of plasma alkyresorcinols (AR) and urinary AR metabolites as biomarkers of compliance. FASEB Journal, 2013, 27, 125.1.	0.2	0
76	Alkylresorcinol Metabolism in Swedish Adults Is Affected by Factors Other Than Intake of Whole-Grain Wheat and Rye,. Journal of Nutrition, 2012, 142, 1479-1486.	1.3	13
77	Alkylresorcinols in Swedish cereal food products. Journal of Food Composition and Analysis, 2012, 28, 119-125.	1.9	21
78	Comparison of gas chromatography–mass spectrometry and high-performance liquid chromatography with coulometric electrode array detection for determination of alkylresorcinol metabolites in human urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 647-651.	1.2	20
79	Plasma Alkylresorcinol Concentrations Correlate with Whole Grain Wheat and Rye Intake and Show Moderate Reproducibility over a 2- to 3-Month Period in Free-Living Swedish Adults. Journal of Nutrition, 2011, 141, 1712-1718.	1.3	63
80	Determination of alkylresorcinol metabolites in human urine by gas chromatography–mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 888-894.	1.2	40