
Zhigao Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3985676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calcinable Polymer Membrane with Revivability for Efficient Oilyâ€Water Remediation. Advanced Materials, 2018, 30, e1801870.	11.1	176
2	Carbon Nanotubes Enhanced Fluorinated Polyurethane Macroporous Membranes for Waterproof and Breathable Application. ACS Applied Materials & 2015, 2015, 7, 13538-13546.	4.0	173
3	Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. Journal of Materials Chemistry A, 2013, 1, 14071.	5.2	165
4	Iron sludge-derived magnetic Fe0/Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation. Chemical Engineering Journal, 2019, 365, 99-110.	6.6	165
5	Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application. Chemical Engineering Journal, 2018, 354, 507-516.	6.6	162
6	Ultrahigh adsorption capacity of anionic dyes with sharp selectivity through the cationic charged hybrid nanofibrous membranes. Chemical Engineering Journal, 2017, 313, 957-966.	6.6	160
7	Superamphiphobic nanofibrous membranes for effective filtration of fine particles. Journal of Colloid and Interface Science, 2014, 428, 41-48.	5.0	137
8	Breathable and asymmetrically superwettable Janus membrane with robust oil-fouling resistance for durable membrane distillation. Journal of Membrane Science, 2018, 563, 602-609.	4.1	137
9	Dual-Bioinspired Design for Constructing Membranes with Superhydrophobicity for Direct Contact Membrane Distillation. Environmental Science & Technology, 2018, 52, 3027-3036.	4.6	130
10	Rational Regulation of Co–N–C Coordination for High-Efficiency Generation of ¹ O ₂ toward Nearly 100% Selective Degradation of Organic Pollutants. Environmental Science & Technology, 2022, 56, 8833-8843.	4.6	130
11	Magnetic Fe–Co crystal doped hierarchical porous carbon fibers for removal of organic pollutants. Journal of Materials Chemistry A, 2017, 5, 18071-18080.	5.2	111
12	Polyamidoamine dendrimer grafted forward osmosis membrane with superior ammonia selectivity and robust antifouling capacity for domestic wastewater concentration. Water Research, 2019, 153, 1-10.	5.3	105
13	Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation. Chemical Engineering Journal, 2020, 384, 123298.	6.6	94
14	Easily scaled-up photo-thermal membrane with structure-dependent auto-cleaning feature for high-efficient solar desalination. Journal of Membrane Science, 2019, 586, 222-230.	4.1	87
15	Electrostatic assembly of superwetting porous nanofibrous membrane toward oil-in-water microemulsion separation. Chemical Engineering Journal, 2018, 354, 463-472.	6.6	68
16	Monolithic and self-roughened Janus fibrous membrane with superhydrophilic/omniphobic surface for robust antifouling and antiwetting membrane distillation. Journal of Membrane Science, 2020, 615, 118499.	4.1	68
17	Superhydrophobic-omniphobic membrane with anti-deformable pores for membrane distillation with excellent wetting resistance. Journal of Membrane Science, 2021, 620, 118768.	4.1	68
18	New Insight into the Aggregation of Graphene Oxide Using Molecular Dynamics Simulations and Extended Derjaguin–Landau–Verwey–Overbeek Theory. Environmental Science & Technology, 2017, 51, 9674-9682.	4.6	63

Zhigao Zhu

#	Article	IF	CITATIONS
19	Adsorption-intensified degradation of organic pollutants over bifunctional α-Fe@carbon nanofibres. Environmental Science: Nano, 2017, 4, 302-306.	2.2	61
20	A mechanically durable, sustained corrosion-resistant photothermal nanofiber membrane for highly efficient solar distillation. Journal of Materials Chemistry A, 2019, 7, 22296-22306.	5.2	60
21	Porous evaporators with special wettability for low-grade heat-driven water desalination. Journal of Materials Chemistry A, 2021, 9, 702-726.	5.2	60
22	Dual-biomimetic superwetting silica nanofibrous membrane for oily water purification. Journal of Membrane Science, 2019, 572, 73-81.	4.1	52
23	Gravity driven ultrafast removal of organic contaminants across catalytic superwetting membranes. Journal of Materials Chemistry A, 2017, 5, 25266-25275.	5.2	45
24	Highly sensitive formaldehyde sensors based on polyvinylamine modified polyacrylonitrile nanofibers. RSC Advances, 2013, 3, 22994.	1.7	44
25	Mechanically durable biomimetic fibrous membrane with superhydrophobicity and superoleophilicity for aqueous oil separation. Chinese Chemical Letters, 2020, 31, 2619-2622.	4.8	36
26	Insight into the feed/permeate flow velocity on the trade-off of water flux and scaling resistance of superhydrophobic and welding-pore fibrous membrane in membrane distillation. Journal of Membrane Science, 2021, 620, 118883.	4.1	35
27	Tailoring pore size and interface of superhydrophobic nanofibrous membrane for robust scaling resistance and flux enhancement in membrane distillation. Journal of Membrane Science, 2022, 658, 120751.	4.1	35
28	Fast capture of methyl-dyes over hierarchical amino-Co _{0.3} Ni _{0.7} Fe ₂ O ₄ @SiO ₂ nanofibrous membranes. Journal of Materials Chemistry A, 2015, 3, 22000-22004.	5.2	34
29	Insights into simultaneous ammonia-selective and anti-fouling mechanism over forward osmosis membrane for resource recovery from domestic wastewater. Journal of Membrane Science, 2019, 573, 135-144.	4.1	30
30	Bioinspired superwetting fibrous skin with hierarchical roughness for efficient oily water separation. Science of the Total Environment, 2020, 744, 140822.	3.9	30
31	Rapid capture of Ponceau S via a hierarchical organic–inorganic hybrid nanofibrous membrane. Journal of Materials Chemistry A, 2016, 4, 5423-5427.	5.2	24
32	Design of firm-pore superhydrophobic fibrous membrane for advancing the durability of membrane distillation. Desalination, 2021, 519, 115185.	4.0	23
33	Omniphobic membrane with process optimization for advancing flux and durability toward concentrating reverse-osmosis concentrated seawater with membrane distillation. Journal of Membrane Science, 2021, 639, 119763.	4.1	23
34	One-step nanotopography construction by polyaniline polymerization for a superhydrophobic nanofibrous membrane towards direct contact membrane distillation. Environmental Science: Nano, 2019, 6, 2553-2564.	2.2	20
35	All-Polymer and Self-Roughened Superhydrophobic PVDF Fibrous Membranes for Stably Concentrating Seawater by Membrane Distillation. ACS Applied Materials & Interfaces, 2021, 13, 45977-45986.	4.0	20
36	Dendritic amine sheltered membrane for simultaneous ammonia selection and fouling mitigation in forward osmosis. Journal of Membrane Science, 2019, 584, 9-19.	4.1	19

ΖΗΙGAO ΖΗU

#	Article	IF	CITATIONS
37	Mechanism insight into gypsum scaling of differently wettable membrane surfaces with antiscalants in membrane distillation. Journal of Membrane Science, 2022, 652, 120499.	4.1	19
38	Ultrahigh and Stable Water Recovery of Reverse Osmosis-Concentrated Seawater with Membrane Distillation by Synchronously Optimizing Membrane Interfaces and Seawater Ingredients. ACS ES&T Water, 2021, 1, 1577-1586.	2.3	18
39	Preparation and characterization of <scp>S</scp> ilicaliteâ€1/ <scp>PDMS</scp> surface sieving pervaporation membrane for separation of ethanol/water mixture. Journal of Applied Polymer Science, 2015, 132, .	1.3	17
40	In Situ Three-Dimensional Welded Nanofibrous Membranes for Robust Membrane Distillation of Concentrated Seawater. Environmental Science & Technology, 2021, 55, 11308-11317.	4.6	17
41	Threeâ€component mixed matrix organic/inorganic hybrid membranes for pervaporation separation of ethanol–water mixture. Journal of Applied Polymer Science, 2017, 134, .	1.3	11
42	Recent advances in membrane distillation using electrospun membranes: advantages, challenges, and outlook. Environmental Science: Water Research and Technology, 2021, 7, 1002-1019.	1.2	11
43	Nitrogen doped hierarchically structured porous carbon fibers with an ultrahigh specific surface area for removal of organic dyes. RSC Advances, 2018, 8, 19116-19124.	1.7	10
44	Co-Electrospun VTiO _{<i>x</i>} Hollow Nanofibers for Selective Oxidation of Methanol to High Value Chemicals. ACS Applied Nano Materials, 2019, 2, 5224-5232.	2.4	7
45	Ion-nucleating competition cooperated with antiscalant for effectively mitigating gypsum scaling in membrane distillation. Desalination, 2022, 539, 115969.	4.0	5
46	Superhydrophobized Polyacrylonitrile/Hierarchicall-FeOOH Nanofibrous Membrane for High-salinity Water Treatment in Membrane Distillation. Chemical Research in Chinese Universities, 2021, 37, 470-479.	1.3	2
47	In Situ Fenton Triggered PDA Coating Copper Mesh with Underwater Superoleophobic Property for Oily Wastewater Pretreatment. Processes, 2021, 9, 1665.	1.3	1