

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3985537/publications.pdf Version: 2024-02-01

ALAN L COW

#	Article	IF	CITATIONS
1	Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics, 2018, 50, 1412-1425.	9.4	924
2	Age-associated cognitive decline. British Medical Bulletin, 2009, 92, 135-152.	2.7	857
3	Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nature Genetics, 2013, 45, 145-154.	9.4	675
4	Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 2011, 16, 996-1005.	4.1	571
5	Older Adults Perceptions of Technology and Barriers to Interacting with Tablet Computers: A Focus Group Study. Frontiers in Psychology, 2017, 8, 1687.	1.1	503
6	Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nature Genetics, 2017, 49, 403-415.	9.4	492
7	The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatrics, 2007, 7, 28.	1.1	399
8	Cohort Profile: The Lothian Birth Cohorts of 1921 and 1936. International Journal of Epidemiology, 2012, 41, 1576-1584.	0.9	359
9	A General Factor of Brain White Matter Integrity Predicts Information Processing Speed in Healthy Older People. Journal of Neuroscience, 2010, 30, 7569-7574.	1.7	297
10	Goldberg's â€~IPIP' Big-Five factor markers: Internal consistency and concurrent validation in Scotland. Personality and Individual Differences, 2005, 39, 317-329.	1.6	231
11	Genetic contributions to stability and change in intelligence from childhood to old age. Nature, 2012, 482, 212-215.	13.7	228
12	White matter hyperintensities and normal-appearing white matter integrity in the aging brain. Neurobiology of Aging, 2015, 36, 909-918.	1.5	224
13	Total MRI load of cerebral small vessel disease and cognitive ability in older people. Neurobiology of Aging, 2015, 36, 2806-2811.	1.5	199
14	Vascular risk factors, large-artery atheroma, and brain white matter hyperintensities. Neurology, 2014, 82, 1331-1338.	1.5	181
15	Neuroprotective lifestyles and the aging brain. Neurology, 2012, 79, 1802-1808.	1.5	168
16	Social Support and Successful Aging. Journal of Individual Differences, 2007, 28, 103-115.	0.5	164
17	Copenhagen Consensus statement 2019: physical activity and ageing. British Journal of Sports Medicine, 2019, 53, 856-858.	3.1	145
18	APOE E4 status predicts age-related cognitive decline in the ninth decade: longitudinal follow-up of the Lothian Birth Cohort 1921. Molecular Psychiatry, 2012, 17, 315-324.	4.1	143

#	Article	IF	CITATIONS
19	A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Molecular Psychiatry, 2014, 19, 76-87.	4.1	142
20	GWAS for executive function and processing speed suggests involvement of the CADM2 gene. Molecular Psychiatry, 2016, 21, 189-197.	4.1	134
21	Stability and change in intelligence from age 11 to ages 70, 79, and 87: The Lothian Birth Cohorts of 1921 and 1936 Psychology and Aging, 2011, 26, 232-240.	1.4	133
22	Which Social Network or Support Factors are Associated with Cognitive Abilities in Old Age?. Gerontology, 2013, 59, 454-463.	1.4	125
23	Occupational complexity and lifetime cognitive abilities. Neurology, 2014, 83, 2285-2291.	1.5	123
24	Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney. Hypertension, 2017, 70, .	1.3	123
25	Childhood Socioeconomic Position and Objectively Measured Physical Capability Levels in Adulthood: A Systematic Review and Meta-Analysis. PLoS ONE, 2011, 6, e15564.	1.1	121
26	Polygenic Risk for Schizophrenia Is Associated with Cognitive Change Between Childhood and Old Age. Biological Psychiatry, 2013, 73, 938-943.	0.7	118
27	Blood Pressure, Internal Carotid Artery Flow Parameters, and Age-Related White Matter Hyperintensities. Hypertension, 2014, 63, 1011-1018.	1.3	114
28	Circulating Inflammatory Markers Are Associated With Magnetic Resonance Imaging-Visible Perivascular Spaces But Not Directly With White Matter Hyperintensities. Stroke, 2014, 45, 605-607.	1.0	113
29	Brain iron deposits are associated with general cognitive ability and cognitive aging. Neurobiology of Aging, 2012, 33, 510-517.e2.	1.5	104
30	Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 2014, 19, 555-559.	4.1	104
31	Harmonization of Neuroticism and Extraversion phenotypes across inventories and cohorts in the Genetics of Personality Consortium: an application of Item Response Theory. Behavior Genetics, 2014, 44, 295-313.	1.4	103
32	Beyond a bigger brain: Multivariable structural brain imaging and intelligence. Intelligence, 2015, 51, 47-56.	1.6	101
33	Coupled Changes in Brain White Matter Microstructure and Fluid Intelligence in Later Life. Journal of Neuroscience, 2015, 35, 8672-8682.	1.7	97
34	Impact of small vessel disease in the brain on gait and balance. Scientific Reports, 2017, 7, 41637.	1.6	86
35	Genetic Associations for Activated Partial Thromboplastin Time and Prothrombin Time, their Gene Expression Profiles, and Risk of Coronary Artery Disease. American Journal of Human Genetics, 2012, 91, 152-162.	2.6	85
36	Brain white matter damage in aging and cognitive ability in youth and older age. Neurobiology of Aging, 2013, 34, 2740-2747.	1.5	83

#	Article	IF	CITATIONS
37	Common Variants of Large Effect in F12, KNG1, and HRG Are Associated with Activated Partial Thromboplastin Time. American Journal of Human Genetics, 2010, 86, 626-631.	2.6	81
38	Replication study of candidate genes for cognitive abilities: the Lothian Birth Cohort 1936. Genes, Brain and Behavior, 2009, 8, 238-247.	1.1	79
39	Brain volumetric changes and cognitive ageing during the eighth decade of life. Human Brain Mapping, 2015, 36, 4910-4925.	1.9	79
40	Cognitive ability at age 11 and 70 years, information processing speed, and APOE variation: The Lothian Birth Cohort 1936 study Psychology and Aging, 2009, 24, 129-138.	1.4	77
41	Facebook use and its association with subjective happiness and loneliness. Computers in Human Behavior, 2019, 92, 151-159.	5.1	75
42	Reverse Causation in the Association Between C-Reactive Protein and Fibrinogen Levels and Cognitive Abilities in an Aging Sample. Psychosomatic Medicine, 2009, 71, 404-409.	1.3	74
43	Estimated maximal and current brain volume predict cognitive ability in old age. Neurobiology of Aging, 2013, 34, 2726-2733.	1.5	73
44	Reverse causation in activity-cognitive ability associations: The Lothian Birth Cohort 1936 Psychology and Aging, 2012, 27, 250-255.	1.4	72
45	Lifecourse Activity Participation From Early, Mid, and Later Adulthood as Determinants of Cognitive Aging: The Lothian Birth Cohort 1921. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2017, 72, 25-37.	2.4	71
46	The Association between Retinal Vascular Network Geometry and Cognitive Ability in an Elderly Population. , 2007, 48, 1995.		70
47	Psychosocial factors and health as determinants of quality of life in community-dwelling older adults. Quality of Life Research, 2012, 21, 505-516.	1.5	68
48	Association of allostatic load with brain structure and cognitive ability in later life. Neurobiology of Aging, 2015, 36, 1390-1399.	1.5	67
49	Genome-wide Studies of Verbal Declarative Memory in Nondemented Older People: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Biological Psychiatry, 2015, 77, 749-763.	0.7	67
50	Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans. PLoS ONE, 2015, 10, e0119752.	1.1	64
51	Examining associations between sexual behaviours and quality of life in older adults. Age and Ageing, 2015, 44, 823-828.	0.7	63
52	Genetic Predictors of Fibrin D-Dimer Levels in Healthy Adults. Circulation, 2011, 123, 1864-1872.	1.6	60
53	Processing Speed and Visuospatial Executive Function Predict Visual Working Memory Ability in Older Adults. Experimental Aging Research, 2012, 38, 1-19.	0.6	60
54	A Tablet for Healthy Ageing: The Effect of a Tablet Computer Training Intervention on Cognitive Abilities in Older Adults. American Journal of Geriatric Psychiatry, 2017, 25, 841-851.	0.6	59

#	Article	IF	CITATIONS
55	Caffeine Consumption and Cognitive Function at Age 70: The Lothian Birth Cohort 1936 Study. Psychosomatic Medicine, 2010, 72, 206-214.	1.3	57
56	Associations between urban greenspace and health-related quality of life in children. Preventive Medicine Reports, 2016, 3, 211-221.	0.8	57
57	Mental Ability in Childhood and Cognitive Aging. Gerontology, 2008, 54, 177-186.	1.4	53
58	Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936. NeuroImage: Clinical, 2020, 25, 102120.	1.4	51
59	Activity Participation and Cognitive Aging from Age 50 to 80 in the <scp>G</scp> lostrup 1914 <scp>C</scp> ohort. Journal of the American Geriatrics Society, 2012, 60, 1831-1838.	1.3	50
60	Incidental Findings on Brain MR Imaging in Older Community-Dwelling Subjects Are Common but Serious Medical Consequences Are Rare: A Cohort Study. PLoS ONE, 2013, 8, e71467.	1.1	49
61	Smoking, childhood IQ, and cognitive function in old age. Journal of Psychosomatic Research, 2012, 73, 132-138.	1.2	48
62	Variation in the dysbindin gene and normal cognitive function in three independent population samples. Genes, Brain and Behavior, 2009, 8, 218-227.	1.1	47
63	The personality–intelligence interface: insights from an ageing cohort. Personality and Individual Differences, 2005, 39, 751-761.	1.6	45
64	Association of Existing and New Candidate Genes for Anxiety, Depression and Personality Traits in Older People. Behavior Genetics, 2010, 40, 518-532.	1.4	44
65	Symmetric faces are a sign of successful cognitive aging. Evolution and Human Behavior, 2009, 30, 429-437.	1.4	41
66	Antioxidant and B vitamin intake in relation to cognitive function in later life in the Lothian Birth Cohort 1936. European Journal of Clinical Nutrition, 2011, 65, 619-626.	1.3	41
67	Risk and protective factors for structural brain ageing in the eighth decade of life. Brain Structure and Function, 2017, 222, 3477-3490.	1.2	40
68	Lifetime intellectual function and satisfaction with life in old age: longitudinal cohort study. BMJ: British Medical Journal, 2005, 331, 141-142.	2.4	39
69	Variants in Doublecortin- and Calmodulin Kinase Like 1, a Gene Up-Regulated by BDNF, Are Associated with Memory and General Cognitive Abilities. PLoS ONE, 2009, 4, e7534.	1.1	38
70	Cytomegalovirus infection and cognitive abilities in old age. Neurobiology of Aging, 2013, 34, 1846-1852.	1.5	38
71	Personality, health, and brain integrity: The Lothian Birth Cohort Study 1936 Health Psychology, 2014, 33, 1477-1486.	1.3	38
72	Towards an active and happy retirement? Changes in leisure activity and depressive symptoms during the retirement transition. Aging and Mental Health, 2021, 25, 621-631.	1.5	38

#	Article	IF	CITATIONS
73	Alcohol intake and cognitive abilities in old age: The Lothian Birth Cohort 1936 study Neuropsychology, 2011, 25, 166-175.	1.0	37
74	Longitudinal telomere length shortening and cognitive and physical decline in later life: The Lothian Birth Cohorts 1936 and 1921. Mechanisms of Ageing and Development, 2016, 154, 43-48.	2.2	37
75	Losing One's Grip: A Bivariate Growth Curve Model of Grip Strength and Nonverbal Reasoning From Age 79 to 87 Years in the Lothian Birth Cohort 1921. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2011, 66B, 699-707.	2.4	36
76	Is body mass index in old age related to cognitive abilities? The Lothian Birth Cohort 1936 Study Psychology and Aging, 2010, 25, 867-875.	1.4	35
77	White Matter Integrity in the Splenium of the Corpus Callosum is Related to Successful Cognitive Aging and Partly Mediates the Protective Effect of an Ancestral Polymorphism in ADRB2. Behavior Genetics, 2010, 40, 146-156.	1.4	35
78	Flavonoid intake in relation to cognitive function in later life in the Lothian Birth Cohort 1936. British Journal of Nutrition, 2011, 106, 141-148.	1.2	34
79	Brain white matter tract integrity and cognitive abilities in community-dwelling older people: The Lothian Birth Cohort, 1936 Neuropsychology, 2013, 27, 595-607.	1.0	34
80	Variation in the uric acid transporter gene (SLC2A9) and memory performance. Human Molecular Genetics, 2010, 19, 2321-2330.	1.4	33
81	Apolipoprotein E is not Related to Memory Abilities at 70ÂYears of Age. Behavior Genetics, 2009, 39, 6-14.	1.4	32
82	Sitting Time, Fidgeting, and All-Cause Mortality in the UK Women's Cohort Study. American Journal of Preventive Medicine, 2016, 50, 154-160.	1.6	32
83	Do white matter hyperintensities mediate the association between brain iron deposition and cognitive abilities in older people?. European Journal of Neurology, 2016, 23, 1202-1209.	1.7	31
84	Occupational Characteristics and Cognitive Aging in the Glostrup 1914 Cohort. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2014, 69, 228-236.	2.4	30
85	A systematic review of the impacts of intergenerational engagement on older adults' cognitive, social, and health outcomes. Ageing Research Reviews, 2021, 71, 101400.	5.0	30
86	Is age kinder to the initially more able?: Yes, and no. Intelligence, 2012, 40, 49-59.	1.6	29
87	Location in cognitive and residential space at age 70 reflects a lifelong trait over parental and environmental circumstances: The Lothian Birth Cohort 1936. Intelligence, 2010, 38, 402-411.	1.6	28
88	Older Adults Experiences of Learning to Use Tablet Computers: A Mixed Methods Study. Frontiers in Psychology, 2018, 9, 1631.	1.1	28
89	A Stairway to Heaven? Structure of the Religious Involvement Inventory and Spiritual Well-Being Scale. Journal of Religion and Health, 2011, 50, 5-19.	0.8	27
90	Symmetry of the face in old age reflects childhood social status. Economics and Human Biology, 2013, 11, 236-244.	0.7	27

#	Article	IF	CITATIONS
91	Predicting Mortality From Human Faces. Psychosomatic Medicine, 2012, 74, 560-566.	1.3	26
92	Social resources and cognitive ageing across 30 years: the Glostrup 1914 Cohort. Age and Ageing, 2016, 45, 480-486.	0.7	26
93	Evolutionary conserved longevity genes and human cognitive abilities in elderly cohorts. European Journal of Human Genetics, 2012, 20, 341-347.	1.4	24
94	Religiosity is negatively associated with later-life intelligence, but not with age-related cognitive decline. Intelligence, 2014, 46, 9-17.	1.6	24
95	Brain iron deposits and lifespan cognitive ability. Age, 2015, 37, 100.	3.0	24
96	A systematic literature review and meta-analysis of real-world interventions for cognitive ageing in healthy older adults. Ageing Research Reviews, 2019, 50, 110-130.	5.0	24
97	Quantitative multi-modal MRI of the Hippocampus and cognitive ability in community-dwelling older subjects. Cortex, 2014, 53, 34-44.	1.1	22
98	Seasonal Differences in Light Exposure and the Associations With Health and Well-Being in Older Adults: An Exploratory Study. Herd, 2017, 10, 64-79.	0.9	22
99	Genetic Copy Number Variation and General Cognitive Ability. PLoS ONE, 2012, 7, e37385.	1.1	21
100	Coupled changes in hippocampal structure and cognitive ability in later life. Brain and Behavior, 2018, 8, e00838.	1.0	21
101	Interaction of APOE e4 and poor glycemic control predicts white matter hyperintensity growth from 73 to 76. Neurobiology of Aging, 2017, 54, 54-58.	1.5	20
102	Early life characteristics and late life burden of cerebral small vessel disease in the Lothian Birth Cohort 1936. Aging, 2016, 8, 2039-2061.	1.4	20
103	Associations between Level and Change in Physical Function and Brain Volumes. PLoS ONE, 2013, 8, e80386.	1.1	19
104	Leisure activity associated with cognitive ability level, but not cognitive change. Frontiers in Psychology, 2014, 5, 1176.	1.1	19
105	Perivascular spaces in the centrum semiovale at the beginning of the 8th decade of life: effect on cognition and associations with mineral deposition. Brain Imaging and Behavior, 2020, 14, 1865-1875.	1.1	19
106	Cerebral small vessel disease burden and longitudinal cognitive decline from age 73 to 82: the Lothian Birth Cohort 1936. Translational Psychiatry, 2021, 11, 376.	2.4	19
107	Predictors of gait speed and its change over three years in community-dwelling older people. Aging, 2018, 10, 144-153.	1.4	19
108	Genetic Variants Associated With Altered Plasma Levels of C-Reactive Protein are not Associated With Late-Life Cognitive Ability in Four Scottish Samples. Behavior Genetics, 2010, 40, 3-11.	1.4	18

#	Article	IF	CITATIONS
109	The Influence of Dyslexia Candidate Genes on Reading Skill in Old Age. Behavior Genetics, 2018, 48, 351-360.	1.4	16
110	A hierarchy of items within Eysenck's EPI. Personality and Individual Differences, 2008, 45, 333-335.	1.6	15
111	Height and intelligence in the Lothian Birth Cohort 1921: a longitudinal study. Age and Ageing, 2010, 39, 272-275.	0.7	14
112	Hippocampal morphology and cognitive functions in community-dwelling older people: the Lothian Birth Cohort 1936. Neurobiology of Aging, 2017, 52, 1-11.	1.5	14
113	Cenetic Associations Between Fibrinogen and Cognitive Performance in Three Scottish Cohorts. Behavior Genetics, 2011, 41, 691-699.	1.4	13
114	Carotid disease at age 73 and cognitive change from age 70 to 76 years: A longitudinal cohort study. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3042-3052.	2.4	13
115	People's Beliefs and Expectations About How Cognitive Skills Change with Age: Evidence From a U.KWide Aging Survey. American Journal of Geriatric Psychiatry, 2018, 26, 797-805.	0.6	13
116	The utility of functional interaction and cluster analysis in CNS proteomics. Journal of Neuroscience Methods, 2009, 180, 321-329.	1.3	11
117	Dietary iodine exposure and brain structures and cognition in older people. Exploratory analysis in the Lothian Birth Cohort 1936. Journal of Nutrition, Health and Aging, 2017, 21, 971-979.	1.5	11
118	Brain structural differences between 73- and 92-year olds matched for childhood intelligence, social background, and intracranial volume. Neurobiology of Aging, 2018, 62, 146-158.	1.5	11
119	Using Theories of Behavior Change to Develop Interventions for Healthy Aging. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2021, 76, S191-S205.	2.4	11
120	A pilot study of urinary peptides as biomarkers for intelligence in old age. Intelligence, 2011, 39, 46-53.	1.6	10
121	Differences in the haematological profile of healthy 70 year old men and women: normal ranges with confirmatory factor analysis. BMC Hematology, 2010, 10, 4.	2.6	9
122	MTHFR polymorphisms and cognitive ageing in the ninth decade: the Lothian Birth Cohort 1921. Genes, Brain and Behavior, 2011, 10, 354-364.	1.1	9
123	Lifestyle Factors and Cognitive Ageing: Variation across Ability and Lifestyle Domains. Journal of Aging Research, 2012, 2012, 1-3.	0.4	9
124	How is musical activity associated with cognitive ability in later life?. Aging, Neuropsychology, and Cognition, 2020, 27, 617-635.	0.7	9
125	Investigating associations between personality and the efficacy of interventions for cognitive ageing: A systematic review. Archives of Gerontology and Geriatrics, 2020, 87, 103992.	1.4	9
126	Is the PASAT Past It? Testing Attention and Concentration Without Numbers. Journal of Clinical and Experimental Neuropsychology, 2004, 26, 723-736.	0.8	8

#	Article	IF	CITATIONS
127	Fluctuating Asymmetry and personality. Personality and Individual Differences, 2011, 50, 49-52.	1.6	8
128	A Decade Later on How to "Use It―So We Don't "Lose It― An Update on the Unanswered Questions about the Influence of Activity Participation on Cognitive Performance in Older Age. Gerontology, 2023, 69, 336-355.	s 1.4	8
129	Vision and intelligence at age 83 in the Lothian Birth Cohort 1921. Intelligence, 2011, 39, 148-154.	1.6	7
130	Motivation and Healthy Aging: A Heuristic Model. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2021, 76, S97-S104.	2.4	7
131	Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing. Age and Ageing, 2014, 43, 712-716.	0.7	6
132	Disentangling wording and substantive factors in the Spiritual Well-Being Scale Psychology of Religion and Spirituality, 2015, 7, 120-129.	0.9	6
133	Cycling Without Age: Assessing the Impact of a Cycling-Based Initiative on Mood and Wellbeing. Gerontology and Geriatric Medicine, 2020, 6, 233372142094663.	0.8	6
134	Reaction time variability and brain white matter integrity Neuropsychology, 2019, 33, 642-657.	1.0	6
135	Associations between total MRI-visible small vessel disease burden and domain-specific cognitive abilities in a community-dwelling older-age cohort. Neurobiology of Aging, 2021, 105, 25-34.	1.5	5
136	Apolipoprotein E Genotype Moderation of the Association Between Physical Activity and Brain Health. A Systematic Review and Meta-Analysis. Frontiers in Aging Neuroscience, 2021, 13, 815439.	1.7	4
137	Measuring activity engagement in old age: An exploratory factor analysis. PLoS ONE, 2021, 16, e0260996.	1.1	4
138	School reform and opportunity throughout the lifecourse: the Lothian Birth Cohort 1936. School Effectiveness and School Improvement, 2014, 25, 105-125.	1.4	3
139	People's views on preserving thinking skills in old age. Educational Gerontology, 2019, 45, 341-352.	0.7	3
140	Comment on Gow, A.J., Watson, R., Whiteman, M. & Deary, I.J. (2011). A Stairway to Heaven? Structure of the Religious Involvement Inventory and Spiritual Well-Being Scale. Journal of Religion & Health doi: 10.1007/s10943-010-9375-2. Journal of Religion and Health, 2011, 50, 899-900.	0.8	2
141	Minor Physical Anomalies, Intelligence, and Cognitive Decline. Experimental Aging Research, 2012, 38, 265-278.	0.6	2
142	Enhancing brain health: 10,000 steps at a time?. Aging Health, 2013, 9, 239-241.	0.3	2
143	3D shape analysis of the brain's third ventricle using a midplane encoded symmetric template model. Computer Methods and Programs in Biomedicine, 2016, 129, 51-62.	2.6	2
144	Opportunities for enhancing brain health across the lifespan. BJ Psych Advances, 2022, 28, 102-111.	0.5	2

#	Article	IF	CITATIONS
145	Genes Versus Lifestyles: Exploring Beliefs About the Determinants of Cognitive Ageing. Frontiers in Psychology, 2022, 13, 838323.	1.1	2
146	Idebenone: a guide to its use in Alzheimer's disease, other age-related cognitive disorders and Friedreich's ataxia. Drugs and Therapy Perspectives, 2010, 26, 1-5.	0.3	1
147	"Brain white matter tract integrity and cognitive abilities in community-dwelling older people: The Lothian Birth Cohort, 1936â€: Correction to Booth et al. (2013) Neuropsychology, 2013, 27, 701-701.	1.0	0
148	112WHAT KEEPS YOU SHARP? PEOPLE'S VIEWS ABOUT PRESERVING THINKING SKILLS IN OLD AGE. Age and Ageing, 2019, 48, i32-i35.	0.7	0
149	Associations between Activity Participation across the Life Course and Cognitive Aging. , 2020, , 440-456.		0
150	Intelligence and Aging. , 2017, , 1201-1213.		0