Houyang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3985140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MoO42â^'-mediated engineering of Na3V2(PO4)3 as advanced cathode materials for sodium-ion batteries. Journal of Colloid and Interface Science, 2022, 606, 1897-1905.	5.0	17
2	<scp>Vacancy–vacancy</scp> pairs induced new phase formation in carbon boride: A design principle to achieve superior performance Li/Naâ€ion battery anodes. EcoMat, 2022, 4, .	6.8	16
3	MoS2/CoFe2O4 heterojunction for boosting photogenerated carrier separation and the dominant role in enhancing peroxymonosulfate activation. Chemical Engineering Journal, 2022, 433, 134467.	6.6	48
4	<i>In situ</i> tailored strategy to remove capping agents from copper sulfide for building better lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 4015-4023.	5.2	7
5	Plasma functionalized MoSe ₂ for efficient nonenzymatic sensing of hydrogen peroxide in ultraâ€wide pH range. SmartMat, 2022, 3, 491-502.	6.4	14
6	Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li2S6-based lithium-polysulfide batteries. Journal of Energy Chemistry, 2021, 52, 163-169.	7.1	28
7	Triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide nanowires enable high-loading and long-lasting liquid Li2S6-based lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 59, 599-607.	7.1	26
8	Potassium mediated Co–Fe-based Prussian blue analogue architectures for aqueous potassium-ion storage. Chemical Communications, 2021, 57, 7019-7022.	2.2	24
9	Investigations of CO ₂ Capture from Gas Mixtures Using Porous Liquids. Langmuir, 2021, 37, 1255-1266.	1.6	10
10	Monoclinic BiPO4: Preparation, photocatalytic properties in experiment and theoretical calculation. Solar Energy, 2021, 220, 440-449.	2.9	13
11	Reshaping two-dimensional MoS2 for superior magnesium-ion battery anodes. Journal of Colloid and Interface Science, 2021, 597, 401-408.	5.0	16
12	Screening and Improving Porous Materials for Ultradeep Desulfurization of Gasoline. Industrial & Engineering Chemistry Research, 2021, 60, 604-613.	1.8	6
13	Microscale investigations of mechanical responses of TKX-50 based polymer bonded explosives using MD simulations. Computational Materials Science, 2020, 172, 109287.	1.4	12
14	Bco-C24: A new 3D Dirac nodal line semi-metallic carbon honeycomb for high performance metal-ion battery anodes. Carbon, 2020, 159, 542-548.	5.4	30
15	Facet-tailoring five-coordinated Ti sites and structure-optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li2S6-based lithium–sulfur batteries. Energy Storage Materials, 2020, 26, 40-45.	9.5	43
16	NiFe-Layered Double Hydroxide Synchronously Activated by Heterojunctions and Vacancies for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 42850-42858.	4.0	105
17	Porous Material Screening and Evaluation for Deep Desulfurization of Dry Air. Langmuir, 2020, 36, 2775-2785.	1.6	10
18	New Findings on an Old Question: Can Defectâ€Free Graphene Monolayers be Superior Metalâ€Ion Battery Anodes?. Advanced Sustainable Systems, 2020, 4, 1900152.	2.7	10

#	Article	IF	CITATIONS
19	Ultrafine Co nanodots embedded in N-doped carbon nanotubes grafted on hexagonal VN for highly efficient overall water splitting. Nano Energy, 2020, 73, 104788.	8.2	71
20	High Activity and Stability of PdO <i>_x</i> Anchored in Porous NiO Nanofibers for Catalyzing Suzuki Coupling Reactions. Journal of Physical Chemistry C, 2020, 124, 22539-22549.	1.5	10
21	Reconfiguring graphene for high-performance metal-ion battery anodes. Energy Storage Materials, 2019, 16, 619-624.	9.5	143
22	Mechanical deformation: A feasible route for reconfiguration of inner interfaces to modulate the high performance of three-dimensional porous carbon material anodes in stretchable lithium-lon batteries. Journal of Colloid and Interface Science, 2019, 555, 431-437.	5.0	8
23	Mechanical deformation induced charge redistribution to promote the high performance of stretchable magnesium-ion batteries based on two-dimensional C ₂ N anodes. Nanoscale, 2019, 11, 15472-15478.	2.8	14
24	Functionalization: An Effective Approach to Open and Close Channels for Electron Transfer in Nitrogenated Holey Graphene C ₂ N Anodes in Sodium-Ion Batteries. Journal of Physical Chemistry Letters, 2019, 10, 721-726.	2.1	37
25	Two-Dimensional Carbon-Based Auxetic Materials for Broad-Spectrum Metal-Ion Battery Anodes. Journal of Physical Chemistry Letters, 2019, 10, 3269-3275.	2.1	64
26	Computational study of transition states for reaction path of energetic material TKX-50. Journal of Energetic Materials, 2019, 37, 240-250.	1.0	10
27	Nanoseparation of Nanoparticle Mixtures with Similar Surface Structures through a Facile Two-Step Approach. Industrial & Engineering Chemistry Research, 2019, 58, 3420-3426.	1.8	3
28	Interfacial active fluorine site-induced electron transfer on TiO ₂ (001) facets to enhance polysulfide redox reactions for better liquid Li ₂ S ₆ -Based lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 6431-6438.	5.2	45
29	Nitrogenated holey graphene C2N monolayer anodes for lithium- and sodium-ion batteries with high performance. Energy Storage Materials, 2019, 16, 574-580.	9.5	100
30	A facile and effective sulfur loading method: Direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery. Energy Storage Materials, 2019, 17, 118-125.	9.5	72
31	Stabilization of two-dimensional penta-silicene for flexible lithium-ion battery anodes <i>via</i> surface chemistry reconfiguration. Physical Chemistry Chemical Physics, 2019, 21, 1029-1037.	1.3	27
32	All-silica zeolites screening for capture of toxic gases from molecular simulation. Chinese Journal of Chemical Engineering, 2019, 27, 174-181.	1.7	12
33	Capture of pure toxic gases through porous materials from molecular simulations. Molecular Physics, 2018, 116, 2095-2107.	0.8	24
34	Popgraphene: a new 2D planar carbon allotrope composed of 5–8–5 carbon rings for high-performance lithium-ion battery anodes from bottom-up programming. Journal of Materials Chemistry A, 2018, 6, 6815-6821.	5.2	212
35	Highly negative Poisson's ratio in a flexible two-dimensional tungsten carbide monolayer. Physical Chemistry Chemical Physics, 2018, 20, 18924-18930.	1.3	42
36	Adsorption, hydrogenation and dehydrogenation of C 2 H on a CoCu bimetallic layer. Surface Science, 2018, 671, 36-42.	0.8	8

#	Article	IF	CITATIONS
37	Semimetallic carbon honeycombs: new three-dimensional graphene allotropes with Dirac cones. Nanoscale, 2018, 10, 2748-2754.	2.8	43
38	Promoting polysulfide redox reactions and improving electronic conductivity in lithium–sulfur batteries <i>via</i> hierarchical cathode materials of graphene-wrapped porous TiO ₂ microspheres with exposed (001) facets. Journal of Materials Chemistry A, 2018, 6, 16574-16582.	5.2	47
39	Tunable Primary and Secondary Encapsulation of a Charged Nonspherical Nanoparticle: Insights from Brownian Dynamics Simulations. Industrial & Engineering Chemistry Research, 2017, 56, 1646-1651.	1.8	8
40	Modulation of the electronic and mechanical properties of phagraphene via hydrogenation and fluorination. Physical Chemistry Chemical Physics, 2017, 19, 11771-11777.	1.3	35
41	Fracture behaviors of brittle and ductile 2D carbon structures under uniaxial tensile stress. Carbon, 2017, 111, 486-492.	5.4	59
42	Controlling Nanorod Oligomer Aggregation in Solutions. Journal of Physical Chemistry C, 2016, 120, 16913-16918.	1.5	6
43	Tunable thermal transport and mechanical properties of graphyne heterojunctions. Physical Chemistry Chemical Physics, 2016, 18, 24210-24218.	1.3	49
44	An experimental and theoretical study of dimethylaminostyryl BODIPY-perylenetetracarboxylic derivative dyads: synthesis, properties and DFT calculation. RSC Advances, 2016, 6, 23094-23101.	1.7	10
45	Selective adsorption of ethylene on bimetallic CuV+/0 (n= 1–5) clusters: A theoretical study. Computational Materials Science, 2016, 111, 489-496.	1.4	11
46	Large-Scale Molecular Simulations on the Mechanical Response and Failure Behavior of a defective Graphene: Cases of 5–8–5 Defects. Scientific Reports, 2015, 5, 14957.	1.6	50
47	Numerical evaluation and improvement efficiency of radial flow movingâ€bed reactors for catalytic pyrolysis of light hydrocarbons to low carbon olefins. Canadian Journal of Chemical Engineering, 2015, 93, 1033-1043.	0.9	4
48	Atomistic Modeling of Triplet–Triplet Energy-Transfer Rates from Drug (<i>S</i>)-Propranolol to (<i>R</i>)-Cinacalcet in Human α ₁ -Acid Glycoprotein. Journal of Physical Chemistry C, 2015, 119, 8014-8022.	1.5	12
49	Geometries and electronic properties of bimetallic CuVn (n=1–5) clusters and their cations: Insight from density functional calculations. Computational Materials Science, 2015, 102, 213-219.	1.4	14
50	Hydrated Ions: From Individual Ions to Ion Pairs to Ion Clusters. Journal of Physical Chemistry B, 2015, 119, 12671-12676.	1.2	57
51	Strength and failure behavior of a graphene sheet containing bi-grain-boundaries. RSC Advances, 2014, 4, 54677-54683.	1.7	61
52	Mechanical Properties and Failure Mechanisms of Graphene under a Central Load. ChemPhysChem, 2014, 15, 2749-2755.	1.0	38
53	Micellar Structures in Nanoparticle-Multiblock Copolymer Complexes. Langmuir, 2014, 30, 3723-3728.	1.6	29
54	Investigation of ternary ConCNâ~'1/0 (n = 1–5) clusters by density functional calculations. Dalton Transactions, 2014, 43, 5516.	1.6	9

#	Article	IF	CITATIONS
55	Nanomembrane Containing a Nanopore in an Electrolyte Solution: A Molecular Dynamics Approach. Journal of Physical Chemistry Letters, 2014, 5, 2979-2982.	2.1	34
56	Formation and Degradation of Multicomponent Multicore Micelles: Insights from Dissipative Particle Dynamics Simulations. Langmuir, 2013, 29, 5428-5434.	1.6	47
57	Periodical structural conversion and its mechanism in hematite: from nanospindles, to nanotubes, to nanotites, nanotires. RSC Advances, 2012, 2, 1009-1013.	1.7	21
58	Self-assembly of π-shaped copolymers. Soft Matter, 2012, 8, 1327-1333.	1.2	28
59	Density functional theory for the selective adsorption of small molecules on a surface modified with polymer brushes. Molecular Simulation, 2012, 38, 274-283.	0.9	10
60	Formation of complex colloidal particles: morphologies and mechanisms. Soft Matter, 2012, 8, 8911.	1.2	17
61	Prediction of band gap reduction and magnetism in (Cu, S)-codoped ZnO. Journal of Magnetism and Magnetic Materials, 2012, 324, 2153-2157.	1.0	16
62	A free-space density functional theory for polymer adsorption: Influence of packing effect on conformations of polymer. Journal of Chemical Physics, 2011, 134, 044713.	1.2	3
63	Aggregation of nanoparticles in a block copolymer bilayer. Journal of Colloid and Interface Science, 2011, 363, 573-578.	5.0	29
64	Relation between molecular orientation and morphology of a multiblock copolymer melt confined in cylindrical nanopores. Polymer, 2010, 51, 968-974.	1.8	14
65	Structure and particle aggregation in block copolymer-binary nanoparticle composites. Polymer, 2010, 51, 5869-5882.	1.8	49
66	Competitive Adsorption and Assembly of Block Copolymer Blends on Nanopatterned Surfaces. Langmuir, 2010, 26, 6663-6668.	1.6	14
67	Electrical Properties and Stability of Poly(<i>N</i> -isopropylacylamide- <i>co</i> -methacrylic Acid) Core-Shell Microgel. Journal of Dispersion Science and Technology, 2009, 30, 1281-1287.	1.3	2
68	The driving force of channel formation in triheteropolymers confined in nanocylindrical tubes. Journal of Chemical Physics, 2009, 130, 024901.	1.2	8
69	The structure of nanochannels formed by block copolymer solutions confined in nanotubes. Journal of Chemical Physics, 2009, 131, 114904.	1.2	7
70	Nanostructures Self-Assembled in Polymer Solutions Confined in Cylindrical Nanopores. Langmuir, 2009, 25, 12315-12319.	1.6	19
71	Nanoparticle aggregation in the presence of a block copolymer. Journal of Chemical Physics, 2009, 131, 244904.	1.2	60
72	Phase Equilibria, Morphologies of Microphase Separation, and Interfacial Structures of Polymer Systems Studied by Equations of State. Structure and Bonding, 2009, , 109-142.	1.0	1

#	Article	IF	CITATIONS
73	Adsorption of Copolymers in a Selective Nanoslit: A Hybrid Density Functional Theory. Journal of Physical Chemistry B, 2008, 112, 9568-9573.	1.2	10
74	Phase Equilibria, Morphologies of Microphase Separation, and Interfacial Structures of Polymer Systems Studied by Equations of State. Structure and Bonding, 2008, , .	1.0	0
75	Density functional theory for copolymers confined in a nanoslit. Journal of Chemical Physics, 2007, 126, 134903.	1.2	17
76	Assembly of Copolymer Blend on Nanopatterned Surfaces:  A Molecular Simulation Study. Langmuir, 2007, 23, 11112-11119.	1.6	18
77	Hybrid Density Functional Theory for Homopolymer Mixtures Confined in a Selective Nanoslit. Journal of Physical Chemistry B, 2007, 111, 5927-5933.	1.2	22
78	Recognition of Multiblock Copolymers on Nanopatterned Surfaces:Â Insight from Molecular Simulations. Langmuir, 2007, 23, 2430-2436.	1.6	23
79	Density functional theory of homopolymer mixtures confined in a slit. Journal of Chemical Physics, 2006, 125, 124705.	1.2	31
80	Density functional theory for the recognition of polymer at nanopatterned surface. Journal of Chemical Physics, 2006, 125, 204708.	1.2	19