
Nicole Wrage-Mönnig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3985134/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rice root Fe plaque enhances oxidation of microbially available organic carbon via Fe(III) reduction-coupled microbial respiration. Soil Biology and Biochemistry, 2022, 167, 108568.	4.2	7
2	Electron shuttle potential of biochar promotes dissimilatory nitrate reduction to ammonium in paddy soil. Soil Biology and Biochemistry, 2022, 172, 108760.	4.2	16
3	Greenhouse Gases from Agriculture. , 2021, , 1-10.		2
4	Climate-Smart Agriculture Practices for Mitigating Greenhouse Gas Emissions. , 2021, , 303-328.		6
5	Isotopic Techniques to Measure N2O, N2 and Their Sources. , 2021, , 213-301.		8
6	Long-term vegetation change in the Western Tien-Shan Mountain pastures, Central Asia, driven by a combination of changing precipitation patterns and grazing pressure. Science of the Total Environment, 2021, 781, 146720.	3.9	9
7	Comparing modified substrate-induced respiration with selective inhibition (SIRIN) and N ₂ O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions. Biogeosciences, 2021, 18, 4629-4650.	1.3	10
8	Identification and verification of key functional groups of biochar influencing soil N2O emission. Biology and Fertility of Soils, 2021, 57, 447-456.	2.3	14
9	Rewetting does not return drained fen peatlands to their old selves. Nature Communications, 2021, 12, 5693.	5.8	75
10	Mass Balances of a Drained and a Rewetted Peatland: on Former Losses and Recent Gains. Soil Systems, 2020, 4, 16.	1.0	14
11	Co-application of a biochar and an electric potential accelerates soil nitrate removal while decreasing N2O emission. Soil Biology and Biochemistry, 2020, 149, 107946.	4.2	12
12	Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2020, 2, 421-438.	6.2	333
13	Rewetting strategies to reduce nitrous oxide emissions from European peatlands. Communications Earth & Environment, 2020, 1, .	2.6	29
14	Application methods of tracers for N ₂ O source determination lead to inhomogeneous distribution in field plots. Analytical Science Advances, 2020, 1, 221-232.	1.2	2
15	From Understanding to Sustainable Use of Peatlands: The WETSCAPES Approach. Soil Systems, 2020, 4, 14.	1.0	45
16	Drought tolerance is determined by species identity and functional group diversity rather than by species diversity within multi-species swards. European Journal of Agronomy, 2020, 119, 126116.	1.9	15
17	Diverse Swards and Mixed-Grazing of Cattle and Sheep for Improved Productivity. Frontiers in Sustainable Food Systems, 2020, 3, .	1.8	27
18	Stable isotope niche segregation between rare topi antelope (Damaliscus lunatus korrigum) and other sympatric bulk grazers in Pendjari Biosphere Reserve (Northern Benin): Implication for topi conservation. Global Ecology and Conservation, 2020, 22, e00918.	1.0	1

#	Article	IF	CITATIONS
19	Understanding the Ecology of Restored Fen Peatlands for Protection and Sustainable Use. Soil Systems, 2020, 4, 24.	1.0	0
20	Effects of nitrate and water content on acetylene inhibition technique bias when analysing soil denitrification rates under an aerobic atmosphere. Geoderma, 2019, 334, 33-36.	2.3	17
21	Rice root Fe plaque enhances paddy soil N2O emissions via Fe(II) oxidation-coupled denitrification. Soil Biology and Biochemistry, 2019, 139, 107610.	4.2	18
22	Electrodes Donate Electrons for Nitrate Reduction in a Soil Matrix via DNRA and Denitrification. Environmental Science & Technology, 2019, 53, 2002-2012.	4.6	31
23	Implications of Spatial Habitat Diversity on Diet Selection of European Bison and Przewalski's Horses in a Rewilding Area. Diversity, 2019, 11, 63.	0.7	16
24	Forage legumes for future dry climates: Lower relative biomass losses of minor forage legumes compared toTrifolium repensunder conditions of periodic drought stress. Journal of Agronomy and Crop Science, 2019, 205, 460-469.	1.7	14
25	Biochar's role as an electron shuttle for mediating soil N2O emissions. Soil Biology and Biochemistry, 2019, 133, 94-96.	4.2	61
26	Biochar reduces the efficiency of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) mitigating N2O emissions. Scientific Reports, 2019, 9, 2346.	1.6	31
27	The phosphorus dilemma in organically farmed grasslands – are legume presence and phytodiversity incompatible?. Ecosystems and People, 2019, 15, 61-73.	1.3	1
28	Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Science of the Total Environment, 2019, 651, 2354-2364.	3.9	339
29	The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biology and Biochemistry, 2018, 123, A3-A16.	4.2	293
30	Forage selectivity by cattle and sheep coâ€grazing swards differing in plant species diversity. Grass and Forage Science, 2018, 73, 320-329.	1.2	34
31	Development and Assessment of a Body Condition Score Scheme for European Bison (Bison bonasus). Animals, 2018, 8, 163.	1.0	5
32	Assessment of vegetation degradation in mountainous pastures of the Western Tien-Shan, Kyrgyzstan, using eMODIS NDVI. Ecological Indicators, 2018, 95, 527-543.	2.6	40
33	Behavioral patterns of (co-)grazing cattle and sheep on swards differing in plant diversity. Applied Animal Behaviour Science, 2017, 191, 17-23.	0.8	27
34	N2 production via aerobic pathways may play a significant role in nitrogen cycling in upland soils. Soil Biology and Biochemistry, 2017, 108, 36-40.	4.2	8
35	Biochar research activities and their relation to development and environmental quality. A meta-analysis. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	17
36	Enhancement of subsoil denitrification using an electrode as an electron donor. Soil Biology and Biochemistry, 2017, 115, 511-515.	4.2	13

#	Article	IF	CITATIONS
37	BIOCHAR AS A TOOL TO REDUCE THE AGRICULTURAL GREENHOUSE-GAS BURDEN – KNOWNS, UNKNOWNS AND FUTURE RESEARCH NEEDS. Journal of Environmental Engineering and Landscape Management, 2017, 25, 114-139.	0.4	144
38	Perturbation-free measurement of in situ di-nitrogen emissions from denitrification in nitrate-rich aquatic ecosystems. Water Research, 2017, 109, 94-101.	5.3	7
39	Drought stress resistance and resilience of permanent grasslands are shaped by functional group composition and N fertilization. Agriculture, Ecosystems and Environment, 2017, 236, 52-60.	2.5	39
40	Relationship between Remote Sensing Data, Plant Biomass and Soil Nitrogen Dynamics in Intensively Managed Grasslands under Controlled Conditions. Sensors, 2017, 17, 1483.	2.1	14
41	Potential short-term losses of N ₂ O and N ₂ from high concentrations of biogas digestate in arable soils. Soil, 2017, 3, 161-176.	2.2	13
42	Farmers' Decision-making and Land Use Changes in Kyrgyz Agropastoral Systems. Mountain Research and Development, 2016, 36, 506-517.	0.4	10
43	Africa's wooden elephant: the baobab tree (Adansonia digitata L.) in Sudan and Kenya: a review. Genetic Resources and Crop Evolution, 2016, 63, 377-399.	0.8	98
44	Light availability is improved for legume species grown in moderately N-fertilized mixtures with non-legume species. Basic and Applied Ecology, 2015, 16, 403-412.	1.2	3
45	Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification - a pure culture study. Rapid Communications in Mass Spectrometry, 2014, 28, 1893-1903.	0.7	71
46	Biomass production of <i>Lolio ynosuretum</i> grassland is not increased by plantâ€species richness. Journal of Plant Nutrition and Soil Science, 2014, 177, 613-623.	1.1	2
47	Fungal oxygen exchange between denitrification intermediates and water. Rapid Communications in Mass Spectrometry, 2014, 28, 377-384.	0.7	15
48	Emissions of CO2 and N2 O from a pasture soil from Madagascar-Simulating conversion to direct-seeding mulch-based cropping in incubations with organic and inorganic inputs. Journal of Plant Nutrition and Soil Science, 2014, 177, 360-368.	1.1	7
49	Grazing intensity affects insect diversity via sward structure and heterogeneity in a longâ€ŧerm experiment. Journal of Applied Ecology, 2014, 51, 968-977.	1.9	78
50	Effects of herbicide application to control sward composition in different management variants. International Journal of Biodiversity Science, Ecosystem Services & Management, 2013, 9, 155-165.	2.9	6
51	Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe – a review. Animal, 2013, 7, 843-859.	1.3	125
52	Canopy Cover and Herbage Accumulation of Fourteen Grassland Species When Stocked with Chickens. Agronomy Journal, 2013, 105, 727-734.	0.9	6
53	Sward Composition and Grazer Species Effects on Nutritive Value and Herbage Accumulation. Agronomy Journal, 2012, 104, 497-506.	0.9	13
54	Response of nitrogen oxide emissions to grazer species and plant species composition in temperate agricultural grassland. Agriculture, Ecosystems and Environment, 2012, 151, 34-43.	2.5	37

NICOLE WRAGE-MöNNIG

#	Article	IF	CITATIONS
55	Vegetation height of patch more important for phytodiversity than that of paddock. Agriculture, Ecosystems and Environment, 2012, 155, 111-116.	2.5	17
56	Manipulating the species composition of permanent grasslands—A new approach to biodiversity experiments. Basic and Applied Ecology, 2012, 13, 1-9.	1.2	32
57	Yield and yield stability in mixtures of productive grassland species: Does species number or functional group composition matter?. Grassland Science, 2012, 58, 94-100.	0.6	18
58	Source Determination of Nitrous Oxide Based on Nitrogen and Oxygen Isotope Tracing. Methods in Enzymology, 2011, 496, 139-160.	0.4	36
59	Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biology and Biochemistry, 2011, 43, 174-178.	4.2	390
60	Oxygen exchange with water alters the oxygen isotopic signature of nitrate in soil ecosystems. Soil Biology and Biochemistry, 2011, 43, 1180-1185.	4.2	81
61	Isotopic composition of soil, vegetation or cattle hair no suitable indicator of nitrogen balances in permanent pasture. Nutrient Cycling in Agroecosystems, 2011, 90, 189-199.	1.1	7
62	Phytodiversity of temperate permanent grasslands: ecosystem services for agriculture and livestock management for diversity conservation. Biodiversity and Conservation, 2011, 20, 3317-3339.	1.2	66
63	Feeding goats on scrubby Mexican rangeland and pasteurization: influences on milk and artisan cheese quality. Tropical Animal Health and Production, 2010, 42, 1127-1134.	0.5	19
64	Nitrifier denitrification can be a source of N ₂ O from soil: a revised approach to the dualâ€isotope labelling method. European Journal of Soil Science, 2010, 61, 759-772.	1.8	133
65	Rangeland condition in relation to environmental variables, grazing intensity and livestock owners' perceptions in semi-arid rangeland in western Iran. Rangeland Journal, 2010, 32, 367.	0.4	8
66	Oxygen exchange between nitrogen oxides and H2O can occur during nitrifier pathways. Soil Biology and Biochemistry, 2009, 41, 1632-1641.	4.2	64
67	The ¹⁸ O signature of biogenic nitrous oxide is determined by O exchange with water. Rapid Communications in Mass Spectrometry, 2009, 23, 104-108.	0.7	71
68	Herbage growth rates on heterogeneous swards as influenced by swardâ€height classes. Grass and Forage Science, 2009, 64, 12-18.	1.2	17
69	Herbage mass and nutritive value of herbage of extensively managed temperate grasslands along a gradient of shrub encroachment. Grass and Forage Science, 2009, 64, 246-254.	1.2	20
70	Oxygen exchange between (de)nitrification intermediates and H ₂ O and its implications for source determination of NO and N ₂ O: a review. Rapid Communications in Mass Spectrometry, 2007, 21, 3569-3578.	0.7	116
71	Soils, a sink for N2O? A review. Global Change Biology, 2007, 13, 1-17.	4.2	1,129
72	Trends in Global Nitrous Oxide Emissions from Animal Production Systems. Nutrient Cycling in Agroecosystems, 2005, 72, 51-65.	1.1	290

#	Article	IF	CITATIONS
73	A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Communications in Mass Spectrometry, 2005, 19, 3298-3306.	0.7	163
74	Nitrous oxide production in grassland soils: assessing the contribution of nitrifier denitrification. Soil Biology and Biochemistry, 2004, 36, 229-236.	4.2	128
75	Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale. FEMS Microbiology Ecology, 2004, 47, 13-18.	1.3	63
76	Distinguishing sources of N2O in European grasslands by stable isotope analysis. Rapid Communications in Mass Spectrometry, 2004, 18, 1201-1207.	0.7	86
77	Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany. Biogeochemistry, 2003, 63, 249-267.	1.7	74
78	Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany Biogeochemistry, 2003, 63, 229-247.	1.7	51
79	Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 2001, 33, 1723-1732.	4.2	1,484