List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3984600/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	BaZiBuShen alleviates cognitive deficits and regulates Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways in aging mice. Journal of Ethnopharmacology, 2022, 282, 114653.	4.1	17
2	Heat Shock Protein 90 as Therapeutic Target for CVDs and Heart Ageing. International Journal of Molecular Sciences, 2022, 23, 649.	4.1	12
3	The Role of Mitochondrial DNA Mutations in Cardiovascular Diseases. International Journal of Molecular Sciences, 2022, 23, 952.	4.1	18
4	The Role of KLF2 in the Regulation of Atherosclerosis Development and Potential Use of KLF2-Targeted Therapy. Biomedicines, 2022, 10, 254.	3.2	20
5	Modulating mTOR Signaling as a Promising Therapeutic Strategy for Atherosclerosis. International Journal of Molecular Sciences, 2022, 23, 1153.	4.1	11
6	Role of the mtDNA Mutations and Mitophagy in Inflammaging. International Journal of Molecular Sciences, 2022, 23, 1323.	4.1	13
7	Local Accumulation of Lymphocytes in the Intima of Human Aorta Is Associated with Giant Multinucleated Endothelial Cells: Possible Explanation for Mosaicism of Atherosclerosis. International Journal of Molecular Sciences, 2022, 23, 1059.	4.1	3
8	The Role of the VEGF Family in Atherosclerosis Development and Its Potential as Treatment Targets. International Journal of Molecular Sciences, 2022, 23, 931.	4.1	36
9	Cholesterol Transport Dysfunction and Its Involvement in Atherogenesis. International Journal of Molecular Sciences, 2022, 23, 1332.	4.1	13
10	Vaccination against Atherosclerosis: Is It Real?. International Journal of Molecular Sciences, 2022, 23, 2417.	4.1	2
11	Atherosclerosis in HIV Patients: What Do We Know so Far?. International Journal of Molecular Sciences, 2022, 23, 2504.	4.1	13
12	Functional Phenotypes of Intraplaque Macrophages and Their Distinct Roles in Atherosclerosis Development and Atheroinflammation. Biomedicines, 2022, 10, 452.	3.2	8
13	Mitochondrial Implications in Cardiovascular Aging and Diseases: The Specific Role of Mitochondrial Dynamics and Shifts. International Journal of Molecular Sciences, 2022, 23, 2951.	4.1	3
14	Somatic Mutations of Hematopoietic Cells Are an Additional Mechanism of Body Aging, Conducive to Comorbidity and Increasing Chronification of Inflammation. Biomedicines, 2022, 10, 782.	3.2	3
15	Editorial: Lipids and Inflammation in Health and Disease. Frontiers in Cardiovascular Medicine, 2022, 9, 864429.	2.4	1
16	The Role of Altered Mitochondrial Metabolism in Thyroid Cancer Development and Mitochondria-Targeted Thyroid Cancer Treatment. International Journal of Molecular Sciences, 2022, 23, 460.	4.1	9
17	Lipids and Lipoproteins in Health and Disease. Biomedicines, 2022, 10, 87.	3.2	1
18	Novel Models of Crohn's Disease Pathogenesis Associated with the Occurrence of Mitochondrial Dysfunction in Intestinal Cells, International Journal of Molecular Sciences, 2022, 23, 5141	4.1	1

#	Article	IF	CITATIONS
19	Mitochondria-Mediated Cardiovascular Benefits of Sodium-Glucose Co-Transporter 2 Inhibitors. International Journal of Molecular Sciences, 2022, 23, 5371.	4.1	4
20	Thirty-Five-Year History of Desialylated Lipoproteins Discovered by Vladimir Tertov. Biomedicines, 2022, 10, 1174.	3.2	6
21	Macrophages in Health and Non-Infectious Disease 2.0. Biomedicines, 2022, 10, 1215.	3.2	0
22	Role of Impaired Mitochondrial Dynamics Processes in the Pathogenesis of Alzheimer's Disease. International Journal of Molecular Sciences, 2022, 23, 6954.	4.1	22
23	Interplay between Zn2+ Homeostasis and Mitochondrial Functions in Cardiovascular Diseases and Heart Ageing. International Journal of Molecular Sciences, 2022, 23, 6890.	4.1	15
24	Aging of Vascular System Is a Complex Process: The Cornerstone Mechanisms. International Journal of Molecular Sciences, 2022, 23, 6926.	4.1	2
25	Effects of Metabolic Disorders in Immune Cells and Synoviocytes on the Development of Rheumatoid Arthritis. Metabolites, 2022, 12, 634.	2.9	2
26	The Role of Mitochondrial Abnormalities in Diabetic Cardiomyopathy. International Journal of Molecular Sciences, 2022, 23, 7863.	4.1	14
27	Pathophysiological Aspects of the Development of Abdominal Aortic Aneurysm with a Special Focus on Mitochondrial Dysfunction and Genetic Associations. Biomolecular Concepts, 2021, 12, 55-67.	2.2	6
28	Involvement of Oxidative Stress and the Innate Immune System in SARS-CoV-2 Infection. Diseases (Basel,) Tj ET	Qq0_0_0 r{	gBT /Qverlock
29	Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis. Current Pharmaceutical Design, 2021, 27, 276-292.	1.9	5
30	Role of Telomeres Shortening in Atherogenesis: An Overview. Cells, 2021, 10, 395.	4.1	13
31	Neuraminidases 1 and 3 Trigger Atherosclerosis by Desialylating Lowâ€Density Lipoproteins and Increasing Their Uptake by Macrophages. Journal of the American Heart Association, 2021, 10, e018756.	3.7	29
32	Two Subpopulations of Human Monocytes That Differ by Mitochondrial Membrane Potential. Biomedicines, 2021, 9, 153.	3.2	0
33	Autophagy and Mitophagy as Essential Components of Atherosclerosis. Cells, 2021, 10, 443.	4.1	23
34	Mutations of mtDNA in some Vascular and Metabolic Diseases. Current Pharmaceutical Design, 2021, 27, 177-184.	1.9	4
35	Disturbance of Mitochondrial Dynamics and Mitochondrial Therapies in Atherosclerosis. Life, 2021, 11, 165.	2.4	15
36	Pro-inflammatory molecules induce cholesterol accumulation in macrophages: Role of inflammatory response in foam cell formation. Atherosclerosis, 2021, 320, 129-130.	0.8	0

#	Article	IF	CITATIONS
37	Immunopathology of Atherosclerosis and Related Diseases: Focus on Molecular Biology. International Journal of Molecular Sciences, 2021, 22, 4080.	4.1	23
38	Macrophages in Health and Non-Infectious Disease. Biomedicines, 2021, 9, 460.	3.2	4
39	Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. International Journal of Molecular Sciences, 2021, 22, 3923.	4.1	54
40	Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. International Journal of Molecular Sciences, 2021, 22, 4459.	4.1	30
41	Genetic and Epigenetic Biomarkers for Diagnosis, Prognosis and Treatment of Metabolic Syndrome. Current Pharmaceutical Design, 2021, 27, 3729-3740.	1.9	9
42	ACE2 Is an Adjacent Element of Atherosclerosis and COVID-19 Pathogenesis. International Journal of Molecular Sciences, 2021, 22, 4691.	4.1	10
43	Atherosclerosis as Mitochondriopathy: Repositioning the Disease to Help Finding New Therapies. Frontiers in Cardiovascular Medicine, 2021, 8, 660473.	2.4	12
44	The Role of Mitochondrial Dysfunction in Vascular Disease, Tumorigenesis, and Diabetes. Frontiers in Molecular Biosciences, 2021, 8, 671908.	3.5	36
45	Prospects for the Use of Sialidase Inhibitors in Anti-atherosclerotic Therapy. Current Medicinal Chemistry, 2021, 28, 2438-2450.	2.4	4
46	BaZiBuShen alleviates altered testicular morphology and spermatogenesis and modulates Sirt6/P53 and Sirt6/NF-κB pathways in aging mice induced by D-galactose and NaNO2. Journal of Ethnopharmacology, 2021, 271, 113810.	4.1	32
47	Proatherogenic Sialidases and Desialylated Lipoproteins: 35 Years of Research and Current State from Bench to Bedside. Biomedicines, 2021, 9, 600.	3.2	26
48	Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD. International Journal of Molecular Sciences, 2021, 22, 6702.	4.1	46
49	Anti-Inflammatory Therapy for Atherosclerosis: Focusing on Cytokines. International Journal of Molecular Sciences, 2021, 22, 7061.	4.1	37
50	The Role of Mitochondrial Mutations and Chronic Inflammation in Diabetes. International Journal of Molecular Sciences, 2021, 22, 6733.	4.1	25
51	Mitochondrial Lipid Homeostasis at the Crossroads of Liver and Heart Diseases. International Journal of Molecular Sciences, 2021, 22, 6949.	4.1	10
52	Recognition of Oxidized Lipids by Macrophages and Its Role in Atherosclerosis Development. Biomedicines, 2021, 9, 915.	3.2	36
53	Immunity in Atherosclerosis: Focusing on T and B Cells. International Journal of Molecular Sciences, 2021, 22, 8379.	4.1	20
54	The Role of Mitochondria-Derived Peptides in Cardiovascular Diseases and Their Potential as Therapeutic Targets. International Journal of Molecular Sciences, 2021, 22, 8770.	4.1	21

#	Article	IF	CITATIONS
55	Mitochondrial Dysfunction in Vascular Wall Cells and Its Role in Atherosclerosis. International Journal of Molecular Sciences, 2021, 22, 8990.	4.1	38
56	Macrophages and Foam Cells: Brief Overview of Their Role, Linkage, and Targeting Potential in Atherosclerosis. Biomedicines, 2021, 9, 1221.	3.2	33
57	Fructus Ligustri Lucidi aqueous extract promotes calcium balance and short-chain fatty acids production in ovariectomized rats. Journal of Ethnopharmacology, 2021, 279, 114348.	4.1	13
58	A comprehensive review on the phytochemistry, pharmacokinetics, and antidiabetic effect of Ginseng. Phytomedicine, 2021, 92, 153717.	5.3	33
59	Some Molecular and Cellular Stress Mechanisms Associated with Neurodegenerative Diseases and Atherosclerosis. International Journal of Molecular Sciences, 2021, 22, 699.	4.1	11
60	Modification of Tumor Necrosis Factor-α and C-C Motif Chemokine Ligand 18 Secretion by Monocytes Derived from Patients with Diabetic Foot Syndrome. Biology, 2020, 9, 3.	2.8	6
61	A Novel Insight at Atherogenesis: The Role of Microbiome. Frontiers in Cell and Developmental Biology, 2020, 8, 586189.	3.7	19
62	NLPR3 Inflammasomes and Their Significance for Atherosclerosis. Biomedicines, 2020, 8, 205.	3.2	23
63	NADPH Oxidases and Their Role in Atherosclerosis. Biomedicines, 2020, 8, 206.	3.2	47
64	Endoplasmic Reticulum Stress in Macrophages: The Vicious Circle of Lipid Accumulation and Pro-Inflammatory Response. Biomedicines, 2020, 8, 210.	3.2	23
65	Therapeutic Potential of Heme Oxygenase-1 in Aneurysmal Diseases. Antioxidants, 2020, 9, 1150.	5.1	7
66	Sialidase Activity in Human Blood Serum Has a Distinct Seasonal Pattern: A Pilot Study. Biology, 2020, 9, 184.	2.8	3
67	Genetics of Arterial-Wall-Specific Mechanisms in Atherosclerosis: Focus on Mitochondrial Mutations. Current Atherosclerosis Reports, 2020, 22, 54.	4.8	4
68	Lipid Metabolism in Macrophages: Focus on Atherosclerosis. Biomedicines, 2020, 8, 262.	3.2	57
69	Sialylated Immunoglobulins for the Treatment of Immuno-Inflammatory Diseases. International Journal of Molecular Sciences, 2020, 21, 5472.	4.1	19
70	Sex-Specific Features of Calcific Aortic Valve Disease. International Journal of Molecular Sciences, 2020, 21, 5620.	4.1	45
71	Noninvasive Testing for Diagnosis of Stable Coronary Artery Disease in the Elderly. International Journal of Molecular Sciences, 2020, 21, 6263.	4.1	3
72	Relationship Between Plasma Osteopontin and Arginine Pathway Metabolites in Patients With Overt Coronary Artery Disease. Frontiers in Physiology, 2020, 11, 982.	2.8	2

#	Article	IF	CITATIONS
73	Impact of Mitochondrial DNA Mutations on Carotid Intima-Media Thickness in the Novosibirsk Region. Life, 2020, 10, 160.	2.4	4
74	Exposure to Zinc Oxide Nanoparticles Disrupts Endothelial Tight and Adherens Junctions and Induces Pulmonary Inflammatory Cell Infiltration. International Journal of Molecular Sciences, 2020, 21, 3437.	4.1	15
75	Cellular Mechanisms of Human Atherogenesis: Focus on Chronification of Inflammation and Mitochondrial Mutations. Frontiers in Pharmacology, 2020, 11, 642.	3.5	28
76	Mitochondrial Dysfunction and DNA Damage in the Context of Pathogenesis of Atherosclerosis. Biomedicines, 2020, 8, 166.	3.2	40
77	The Diabetes Mellitus–Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. International Journal of Molecular Sciences, 2020, 21, 1835.	4.1	469
78	In Search for Genes Related to Atherosclerosis and Dyslipidemia Using Animal Models. International Journal of Molecular Sciences, 2020, 21, 2097.	4.1	14
79	Carotid Atherosclerosis Progression in Postmenopausal Women Receiving a Mixed Phytoestrogen Regimen: Plausible Parallels with Kronos Early Estrogen Replacement Study. Biology, 2020, 9, 48.	2.8	1
80	Signaling Pathways and Key Genes Involved in Regulation of foam Cell Formation in Atherosclerosis. Cells, 2020, 9, 584.	4.1	67
81	The Role of Mitochondria in Cardiovascular Diseases. Biology, 2020, 9, 137.	2.8	40
82	Data on association of mitochondrial heteroplasmy with carotid intima-media thickness in subjects from Russian and Kazakh populations. Data in Brief, 2020, 29, 105136.	1.0	7
83	The Link between Chronic Stress and Accelerated Aging. Biomedicines, 2020, 8, 198.	3.2	57
84	Role of Phagocytosis in the Pro-Inflammatory Response in LDL-Induced Foam Cell Formation; a Transcriptome Analysis. International Journal of Molecular Sciences, 2020, 21, 817.	4.1	17
85	Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. International Journal of Molecular Sciences, 2020, 21, 2992.	4.1	45
86	Lipidâ€based gene delivery to macrophage mitochondria for atherosclerosis therapy. Pharmacology Research and Perspectives, 2020, 8, e00584.	2.4	13
87	Signaling Pathways Potentially Responsible for Foam Cell Formation: Cholesterol Accumulation or Inflammatory Response—What is First?. International Journal of Molecular Sciences, 2020, 21, 2716.	4.1	16
88	Clinical Effectiveness of a Combination of Black Elder Berries, Violet Herb, and Calendula Flowers in Chronic Obstructive Pulmonary Disease: The Results of a Double-Blinded Placebo-Controlled Study. Biology, 2020, 9, 83.	2.8	0
89	Oxidative Stress and Antioxidants in Atherosclerosis Development and Treatment. Biology, 2020, 9, 60.	2.8	68
90	Contribution of Neurotrophins to the Immune System Regulation and Possible Connection to Alcohol Addiction. Biology, 2020, 9, 63.	2.8	11

#	Article	IF	CITATIONS
91	Possible Role of Mitochondrial DNA Mutations in Chronification of Inflammation: Focus on Atherosclerosis. Journal of Clinical Medicine, 2020, 9, 978.	2.4	23
92	Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Frontiers in Pharmacology, 2020, 11, 613780.	3.5	142
93	Mitochondrion as a Selective Target for the Treatment of Atherosclerosis: Role of Mitochondrial DNA Mutations and Defective Mitophagy in the Pathogenesis of Atherosclerosis and Chronic Inflammation. Current Neuropharmacology, 2020, 18, 1064-1075.	2.9	43
94	Novel Approaches to Anti-atherosclerotic Therapy: Cell-based Models and Herbal Preparations (Review) Tj ETQq0	0 0 rgBT 1.2	/Overlock 10
95	Modified and Dysfunctional Lipoproteins in Atherosclerosis: Effectors or Biomarkers?. Current Medicinal Chemistry, 2019, 26, 1512-1524.	2.4	17
96	Changes in Mitochondrial Genome Associated with Predisposition to Atherosclerosis and Related Disease. Biomolecules, 2019, 9, 377.	4.0	25
97	The Atherogenic Role of Circulating Modified Lipids in Atherosclerosis. International Journal of Molecular Sciences, 2019, 20, 3561.	4.1	89
98	MicroRNAs as Potential Biomarkers in Atherosclerosis. International Journal of Molecular Sciences, 2019, 20, 5547.	4.1	87
99	Immune-Inflammatory Responses in Atherosclerosis: The Role of Myeloid Cells. Journal of Clinical Medicine, 2019, 8, 1798.	2.4	45
100	Heteroplasmic Variants of Mitochondrial DNA in Atherosclerotic Lesions of Human Aortic Intima. Biomolecules, 2019, 9, 455.	4.0	13
101	Creation of Cybrid Cultures Containing mtDNA Mutations m.12315G>A and m.1555G>A, Associated with Atherosclerosis. Biomolecules, 2019, 9, 499.	4.0	8
102	Pericytes in Atherosclerosis. Advances in Experimental Medicine and Biology, 2019, 1147, 279-297.	1.6	16
103	Distinct phospholipid and sphingolipid species are linked to altered HDL function in apolipoprotein A-I deficiency. Journal of Clinical Lipidology, 2019, 13, 468-480.e8.	1.5	16
104	Sialidase activity in human pathologies. European Journal of Pharmacology, 2019, 842, 345-350.	3.5	60
105	Glycosylation of human plasma lipoproteins reveals a high level of diversity, which directly impacts their functional properties. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 643-653.	2.4	19
106	Fructus Ligustri Lucidi preserves bone quality through the regulation of gut microbiota diversity, oxidative stress, TMAO and Sirt6 levels in aging mice. Aging, 2019, 11, 9348-9368.	3.1	72
107	Creation of Cultures Containing Mutations Linked with Cardiovascular Diseases using Transfection and Genome Editing. Current Pharmaceutical Design, 2019, 25, 693-699.	1.9	7
108	Trans-sialidase Associated with Atherosclerosis: Defining the Identity of a Key Enzyme Involved in the Pathology. Current Drug Targets, 2019, 20, 938-941.	2.1	5

#	Article	IF	CITATIONS
109	Human Disease Modelling Techniques: Current Progress. Current Molecular Medicine, 2019, 18, 655-660.	1.3	0
110	Modelling of atherosclerosis in genetically modified animals. American Journal of Translational Research (discontinued), 2019, 11, 4614-4633.	0.0	6
111	Potential of anti-inflammatory agents for treatment of atherosclerosis. Experimental and Molecular Pathology, 2018, 104, 114-124.	2.1	106
112	New biomarkers for diagnosis and prognosis of localized prostate cancer. Seminars in Cancer Biology, 2018, 52, 9-16.	9.6	47
113	The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology, 2018, 223, 101-111.	1.9	209
114	The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Annals of Medicine, 2018, 50, 121-127.	3.8	299
115	Modified LDL Particles Activate Inflammatory Pathways in Monocyte-derived Macrophages: Transcriptome Analysis. Current Pharmaceutical Design, 2018, 24, 3143-3151.	1.9	29
116	Mitochondrial diseases caused by mtDNA mutations: a mini-review. Therapeutics and Clinical Risk Management, 2018, Volume 14, 1933-1942.	2.0	49
117	Matrix metalloproteinases in pro-atherosclerotic arterial remodeling. Journal of Molecular and Cellular Cardiology, 2018, 123, 159-167.	1.9	51
118	Response to: Comment on "Role of Mitochondrial Genome Mutations in Pathogenesis of Carotid Atherosclerosis― Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-3.	4.0	1
119	Modified lipoproteins as biomarkers of atherosclerosis. Frontiers in Bioscience - Landmark, 2018, 23, 1422-1444.	3.0	18
120	Mitochondrial Genome Mutations Associated with Myocardial Infarction. Disease Markers, 2018, 2018, 1-6.	1.3	13
121	Data on association of mitochondrial heteroplasmy and cardiovascular risk factors: Comparison of samples from Russian and Mexican populations. Data in Brief, 2018, 18, 16-21.	1.0	11
122	Cybrid Models of Pathological Cell Processes in Different Diseases. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-6.	4.0	17
123	LDL and foam cell formation as the basis of atherogenesis. Current Opinion in Lipidology, 2018, 29, 279-284.	2.7	36
124	HDL activates expression of genes stimulating cholesterol efflux in human monocyte-derived macrophages. Experimental and Molecular Pathology, 2018, 105, 202-207.	2.1	11
125	Tumor Necrosis Factor-Î \pm and C-C Motif Chemokine Ligand 18 Associate with Atherosclerotic Lipid Accumulation In situ and In vitro. Current Pharmaceutical Design, 2018, 24, 2883-2889.	1.9	17
126	Engineered Nanoparticles: Their Properties and Putative Applications for Therapeutic Approaches Utilizing Stem Cells for the Repair of Atherosclerotic Disease. Current Drug Targets, 2018, 19, 1639-1648.	2.1	5

#	Article	IF	CITATIONS
127	Chemokines and Relevant microRNAs in the Atherogenic Process. Mini-Reviews in Medicinal Chemistry, 2018, 18, 597-608.	2.4	10
128	The phenomenon of atherosclerosis reversal and regression: Lessons from animal models. Experimental and Molecular Pathology, 2017, 102, 138-145.	2.1	29
129	How do macrophages sense modified low-density lipoproteins?. International Journal of Cardiology, 2017, 230, 232-240.	1.7	27
130	Macrophages and Their Contribution to the Development of Atherosclerosis. Results and Problems in Cell Differentiation, 2017, 62, 273-298.	0.7	17
131	Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology. Atherosclerosis, 2017, 263, 361-368.	0.8	44
132	The effect of maximal vs submaximal exertion on postprandial lipid levels in individuals with and without coronary heart disease. Journal of Clinical Lipidology, 2017, 11, 369-376.	1.5	1
133	Mechanisms of foam cell formation in atherosclerosis. Journal of Molecular Medicine, 2017, 95, 1153-1165.	3.9	406
134	Role of lipids and intraplaque hypoxia in the formation of neovascularization in atherosclerosis. Annals of Medicine, 2017, 49, 661-677.	3.8	21
135	The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities. International Journal of Cardiology, 2017, 245, 236-244.	1.7	33
136	Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. International Journal of Cardiology, 2017, 227, 66-82.	1.7	48
137	Paraoxonase and atherosclerosis-related cardiovascular diseases. Biochimie, 2017, 132, 19-27.	2.6	107
138	Poor glycemic control in type 2 diabetes enhances functional and compositional alterations of small, dense HDL3c. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 188-195.	2.4	31
139	CD68/macrosialin: not just a histochemical marker. Laboratory Investigation, 2017, 97, 4-13.	3.7	447
140	Thrombospondins: A Role in Cardiovascular Disease. International Journal of Molecular Sciences, 2017, 18, 1540.	4.1	48
141	Role of Mitochondrial Genome Mutations in Pathogenesis of Carotid Atherosclerosis. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-7.	4.0	31
142	Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.	4.0	247
143	Nanocarriers in Improving Chemotherapy of Multidrug Resistant Tumors: Key Developments and Perspectives. Current Pharmaceutical Design, 2017, 23, 3301-3308.	1.9	8
144	Use of Primary Macrophages for Searching Novel Immunocorrectors. Current Pharmaceutical Design, 2017, 23, 915-920.	1.9	3

#	Article	IF	CITATIONS
145	Blood Serum Atherogenicity: Cellular Test for the Development of Anti- Atherosclerotic Therapy. Current Pharmaceutical Design, 2017, 23, 1195-1206.	1.9	5
146	Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy. Journal of Immunology Research, 2016, 2016, 1-9.	2.2	32
147	Cellular Model of Atherogenesis Based on Pluripotent Vascular Wall Pericytes. Stem Cells International, 2016, 2016, 1-7.	2.5	16
148	Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. BioMed Research International, 2016, 2016, 1-13.	1.9	252
149	PPAR in Cardiovascular Disorders. PPAR Research, 2016, 2016, 1-2.	2.4	6
150	The Role of Endoplasmic Reticulum Stress and Unfolded Protein Response in Atherosclerosis. International Journal of Molecular Sciences, 2016, 17, 193.	4.1	72
151	Anti-Atherosclerotic Effects of a Phytoestrogen-Rich Herbal Preparation in Postmenopausal Women. International Journal of Molecular Sciences, 2016, 17, 1318.	4.1	39
152	Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on) Tj ETQq0 0 0 rgBT /	Qverlock 1.9	10 Tf 50 462
153	The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. Journal of Molecular and Cellular Cardiology, 2016, 97, 47-55.	1.9	144
154	ApoA1 and ApoA1-specific self-antibodies in cardiovascular disease. Laboratory Investigation, 2016, 96, 708-718.	3.7	66
155	Macrophageâ€mediated cholesterol handling in atherosclerosis. Journal of Cellular and Molecular Medicine, 2016, 20, 17-28.	3.6	375
156	Evidence based efficacy of herbal preparations in ageing associated cardiovascular disorders. Phytomedicine, 2016, 23, 1065-1067.	5.3	4
157	Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells. Immunobiology, 2016, 221, 1014-1033.	1.9	53
158	Dataset of mitochondrial genome variants associated with asymptomatic atherosclerosis. Data in Brief, 2016, 7, 1570-1575.	1.0	10
159	Links between atherosclerotic and periodontal disease. Experimental and Molecular Pathology, 2016, 100, 220-235.	2.1	94
160	Analysis of mitochondrial DNA heteroplasmic mutations A1555G, C3256T, T3336C, С5178Ð; G12315A, G13513/ G14459A, G14846Еand G15059A in CHD patients with the history of myocardial infarction. Experimental and Molecular Pathology, 2016, 100, 87-91.	4, 2.1	20
161	Cellular models of atherosclerosis and their implication for testing natural substances with anti-atherosclerotic potential. Phytomedicine, 2016, 23, 1190-1197.	5.3	38

162 Cellular mechanisms of human atherosclerosis: Role of cell-to-cell communications in subendothelial cell functions. Tissue and Cell, 2016, 48, 25-34.

2.2 17

#	Article	IF	CITATIONS
163	Anti-cytokine therapy for prevention of atherosclerosis. Phytomedicine, 2016, 23, 1198-1210.	5.3	24
164	Anti-atherosclerotic effects of garlic preparation in freeze injury model of atherosclerosis in cholesterol-fed rabbits. Phytomedicine, 2016, 23, 1235-1239.	5.3	23
165	LDL electronegativity index: a potential novel index for predicting cardiovascular disease. Vascular Health and Risk Management, 2015, 11, 525.	2.3	23
166	Role of gut microbiota in the modulation of atherosclerosis-associated immune response. Frontiers in Microbiology, 2015, 6, 671.	3.5	76
167	Endothelial Barrier and Its Abnormalities in Cardiovascular Disease. Frontiers in Physiology, 2015, 6, 365.	2.8	184
168	T Helper Lymphocyte Subsets and Plasticity in Autoimmunity and Cancer: An Overview. BioMed Research International, 2015, 2015, 1-9.	1.9	99
169	Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. BioMed Research International, 2015, 2015, 1-18.	1.9	139
170	Development of Antiatherosclerotic Drugs on the basis of Natural Products Using Cell Model Approach. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-11.	4.0	18
171	Mosaicism of Mitochondrial Genetic Variation in Atherosclerotic Lesions of the Human Aorta. BioMed Research International, 2015, 2015, 1-9.	1.9	34
172	Heterogeneity of Tregs and the complexity in the IL-12 cytokine family signaling in driving T-cell immune responses in atherosclerotic vessels. Molecular Immunology, 2015, 65, 133-138.	2.2	8
173	Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation. Immunobiology, 2015, 220, 833-844.	1.9	60
174	Peroxisome proliferator-activated receptor (PPAR) gamma in cardiovascular disorders and cardiovascular surgery. Journal of Cardiology, 2015, 66, 271-278.	1.9	47
175	Association of mutations in the mitochondrial genome with the subclinical carotid atherosclerosis in women. Experimental and Molecular Pathology, 2015, 99, 25-32.	2.1	13
176	Vascular stem/progenitor cells: current status of the problem. Cell and Tissue Research, 2015, 362, 1-7.	2.9	29
177	Mutations of mitochondrial genome in carotid atherosclerosis. Frontiers in Genetics, 2015, 6, 111.	2.3	10
178	Phenomenon of individual difference in human monocyte activation. Experimental and Molecular Pathology, 2015, 99, 151-154.	2.1	11
179	Study of the activated macrophage transcriptome. Experimental and Molecular Pathology, 2015, 99, 575-580.	2.1	23
180	Changes in transcriptome of macrophages in atherosclerosis. Journal of Cellular and Molecular Medicine, 2015, 19, 1163-1173.	3.6	82

#	Article	IF	CITATIONS
181	Quantitative analysis of the expression of caspase 3 and caspase 9 in different types of atherosclerotic lesions in the human aorta. Experimental and Molecular Pathology, 2015, 99, 1-6.	2.1	13
182	Innervation of the arterial wall and its modification in atherosclerosis. Autonomic Neuroscience: Basic and Clinical, 2015, 193, 7-11.	2.8	32
183	Association of mitochondrial mutations with the age of patients having atherosclerotic lesions. Experimental and Molecular Pathology, 2015, 99, 717-719.	2.1	11
184	Neutrophil's weapons in atherosclerosis. Experimental and Molecular Pathology, 2015, 99, 663-671.	2.1	44
185	Mutations of Mitochondrial DNA in Atherosclerosis and Atherosclerosis-Related Diseases. Current Pharmaceutical Design, 2015, 21, 1158-1163.	1.9	21
186	Dendritic Cells: A Double-Edge Sword in Atherosclerotic Inflammation. Current Pharmaceutical Design, 2015, 21, 1118-1123.	1.9	7
187	Phytoestrogen-Rich Dietary Supplements in Anti-Atherosclerotic Therapy in Postmenopausal Women. Current Pharmaceutical Design, 2015, 22, 152-163.	1.9	17
188	Mitochondrial genome sequencing in atherosclerosis: what's next?. Current Pharmaceutical Design, 2015, 22, 390-396.	1.9	7
189	Vascular Endothelium: Functioning in Norm, Changes in Atherosclerosis and Current Dietary Approaches to Improve Endothelial Function. Mini-Reviews in Medicinal Chemistry, 2015, 15, 338-350.	2.4	49
190	Intimal pericytes as the second line of immune defence in atherosclerosis. World Journal of Cardiology, 2015, 7, 583.	1.5	23
191	Approach to Reduction of Blood Atherogenicity. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-8.	4.0	11
192	Role of Endoplasmic Reticulum Stress in Atherosclerosis and Diabetic Macrovascular Complications. BioMed Research International, 2014, 2014, 1-14.	1.9	63
193	Modified Low Density Lipoprotein and Lipoprotein-Containing Circulating Immune Complexes as Diagnostic and Prognostic Biomarkers of Atherosclerosis and Type 1 Diabetes Macrovascular Disease. International Journal of Molecular Sciences, 2014, 15, 12807-12841.	4.1	74
194	Dendritic cells in atherosclerotic inflammation: the complexity of functions and the peculiarities of pathophysiological effects. Frontiers in Physiology, 2014, 5, 196.	2.8	28
195	Low Density Lipoprotein-Containing Circulating Immune Complexes: Role in Atherosclerosis and Diagnostic Value. BioMed Research International, 2014, 2014, 1-7.	1.9	38
196	Quantitative Assessment of Heteroplasmy of Mitochondrial Genome: Perspectives in Diagnostics and Methodological Pitfalls. BioMed Research International, 2014, 2014, 1-9.	1.9	40
197	Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Frontiers in Physiology, 2014, 5, 279.	2.8	61
198	Mitochondrial Aging and Age-Related Dysfunction of Mitochondria. BioMed Research International, 2014, 2014, 1-7.	1.9	312

#	Article	IF	CITATIONS
199	The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells. Cardiovascular Research, 2014, 103, 438-451.	3.8	47
200	Intestinal mucosal tolerance and impact of gut microbiota to mucosal tolerance. Frontiers in Microbiology, 2014, 5, 781.	3.5	66
201	Diagnostic and Prognostic Value of Low Density Lipoprotein-Containing Circulating Immune Complexes in Atherosclerosis. Journal of Clinical Immunology, 2013, 33, 489-495.	3.8	21
202	Increased Shedding of Microvesicles from Intimal Smooth Muscle Cells in Athero-Prone Areas of the Human Aorta: Implications for Understanding of the Predisease Stage. Pathobiology, 2013, 80, 24-31.	3.8	27
203	Regulatory T cells in atherosclerosis and strategies to induce the endogenous atheroprotective immune response. Immunology Letters, 2013, 151, 10-22.	2.5	52
204	Low density lipoprotein-containing circulating immune complexes have better prognostic value in carotid intima-media thickness progression than other lipid parameters. International Journal of Cardiology, 2013, 166, 747-748.	1.7	8
205	Changes of mitochondria in atherosclerosis: Possible determinant inÂthe pathogenesis of the disease. Atherosclerosis, 2013, 227, 283-288.	0.8	52
206	Lipid Regulators during Atherogenesis: Expression of LXR, PPAR, and SREBP mRNA in the Human Aorta. PLoS ONE, 2013, 8, e63374.	2.5	14
207	Vascular Extracellular Matrix in Atherosclerosis. Cardiology in Review, 2013, 21, 270-288.	1.4	96
208	Changes of lysosomes in the earliest stages of the development of atherosclerosis. Journal of Cellular and Molecular Medicine, 2013, 17, 626-635.	3.6	16
209	Intracellular Cholesterol Retention—New Target for Direct Anti-Atherosclerotic Therapy. Open Journal of Endocrine and Metabolic Diseases, 2013, 03, 9-17.	0.2	0
210	Mitochondrial Mutations in Atherosclerosis: New Solutions in Research and Possible Clinical Applications. Current Pharmaceutical Design, 2013, 19, 5942-5953.	1.9	29
211	Association of Mitochondrial Genetic Variation with Carotid Atherosclerosis. PLoS ONE, 2013, 8, e68070.	2.5	38
212	Anti-Atherosclerotic Therapy Based on Botanicals. Recent Patents on Cardiovascular Drug Discovery, 2013, 8, 56-66.	1.5	44
213	Association of the level of heteroplasmy of the 15059G>A mutation in the MT-CYB mitochondrial gene with essential hypertension. World Journal of Cardiology, 2013, 5, 132.	1.5	10
214	Direct anti-atherosclerotic therapy preventing intracellular cholesterol retention. Health, 2013, 05, 11-18.	0.3	1
215	Mitochondrial Mutations are Associated with Atherosclerotic Lesions in the Human Aorta. Clinical and Developmental Immunology, 2012, 2012, 1-5.	3.3	43
216	Strategies to deliver microRNAs as potential therapeutics in the treatment of cardiovascular pathology. Drug Delivery, 2012, 19, 392-405.	5.7	37

#	Article	IF	CITATIONS
217	Widespread distribution of HLA-DR-expressing cells in macroscopically undiseased intima of the human aorta: A possible role in surveillance and maintenance of vascular homeostasis. Immunobiology, 2012, 217, 558-568.	1.9	19
218	Monocytes as a diagnostic marker of cardiovascular diseases. Immunobiology, 2012, 217, 476-482.	1.9	103
219	Mitochondrial dysfunction and mitochondrial DNA mutations in atherosclerotic complications in diabetes. World Journal of Cardiology, 2012, 4, 148.	1.5	20
220	Pluronic Block Copolymers Inhibit Low Density Lipoprotein Selfâ€Association. Lipids, 2012, 47, 995-1000.	1.7	8
221	Mutation C3256T of Mitochondrial Genome in White Blood Cells: Novel Genetic Marker of Atherosclerosis and Coronary Heart Disease. PLoS ONE, 2012, 7, e46573.	2.5	27
222	Musashi-1 expression in atherosclerotic arteries and its relevance to the origin of arterial smooth muscle cells: Histopathological findings and speculations. Atherosclerosis, 2011, 215, 355-365.	0.8	9
223	Correlation between lipid deposition, immune-inflammatory cell content and MHC class II expression in diffuse intimal thickening of the human aorta. Atherosclerosis, 2011, 219, 171-183.	0.8	20
224	The Interaction of Plasma Sialylated and Desialylated Lipoproteins with Collagen from the Intima and Media of Uninvolved and Atherosclerotic Human Aorta. Journal of Lipids, 2011, 2011, 1-8.	4.8	8
225	Decreased Expression of Liver X Receptor-α in Macrophages Infected with <i>Chlamydia pneumoniae</i> in Human Atherosclerotic Arteries in situ. Journal of Innate Immunity, 2011, 3, 483-494.	3.8	7
226	The effects of time-released garlic powder tablets on multifunctional cardiovascular risk in patients with coronary artery disease. Lipids in Health and Disease, 2010, 9, 119.	3.0	81
227	Time-released garlic powder tablets lower systolic and diastolic blood pressure in men with mild and moderate arterial hypertension. Hypertension Research, 2009, 32, 433-437.	2.7	56
228	Metabolic effects of time-released garlic powder tablets in type 2 diabetes mellitus: the results of double-blinded placebo-controlled study. Acta Diabetologica, 2008, 45, 1-6.	2.5	90
229	Lipid-Lowering Effects of Time-Released Garlic Powder Tablets in Double-Blinded Placebo-Controlled Randomized Study. Journal of Atherosclerosis and Thrombosis, 2008, 15, 334-338.	2.0	68
230	Evaluation of Cell Proliferation in Human Atherosclerotic Lesions. , 2001, 52, 213-218.		2
231	In vivo oxidized low density lipoprotein: degree of lipoprotein oxidation does not correlate with its atherogenic properties. Molecular and Cellular Biochemistry, 1998, 183, 141-146.	3.1	9
232	Cell proliferation in normal and atherosclerotic human aorta: proliferative splash in lipid-rich lesions. Atherosclerosis, 1998, 139, 41-48.	0.8	67
233	Antioxidant content in low density lipoprotein and lipoprotein oxidation <i>in vivo</i> and <i>in vivo</i> d <i>in vitro</i> . Free Radical Research, 1998, 29, 165-173.	3.3	24
234	The Effects of Antihypertensive Agents on Atherosclerosis-Related Parameters of Human Aorta Intimal Cells. Cardiology, 1998, 89, 111-118.	1.4	12

#	Article	IF	CITATIONS
235	Subendothelial smooth muscle cells of human aorta express macrophage antigen in situ and in vitro. Atherosclerosis, 1997, 135, 19-27.	0.8	104
236	Antiatherosclerotic and antiatherogenic effects of a calcium antagonist plus statin combination: amlodipine and lovastatin. International Journal of Cardiology, 1997, 62, S67-S77.	1.7	16
237	Effects of garlic on atherosclerosis. Nutrition, 1997, 13, 656-663.	2.4	76
238	Metabolism of Native and Naturally Occurring Multiple Modified Low Density Lipoprotein in Smooth Muscle Cells of Human Aortic Intima. Experimental and Molecular Pathology, 1997, 64, 127-145.	2.1	57
239	In vitro effect of garlic powder extract on lipid content in normal and atherosclerotic human aortic cells. Lipids, 1997, 32, 1055-1060.	1.7	44
240	Similarity Between Naturally Occurring Modified Desialylated, Electronegative and Aortic Low Density Lipoprotein. Free Radical Research, 1996, 25, 313-319.	3.3	26
241	Diagnostic value of immune cholesterol as a marker for atherosclerosis. European Journal of Cardiovascular Prevention and Rehabilitation, 1995, 2, 459???466.	1.5	7
242	Naturally Occurring Modified Low Density Lipoproteins Are Similar if Not Identical: More Electronegative and Desialylated Lipoprotein Subfractions. Experimental and Molecular Pathology, 1995, 62, 166-172.	2.1	45
243	Direct Anti-atherosclerosis-related Effects of Garlic. Annals of Medicine, 1995, 27, 63-65.	3.8	57
244	Characteristics of low-density lipoprotein subfractions from patients with coronary artery disease. Coronary Artery Disease, 1993, 4, 379-386.	0.7	50
245	Beta-blockers: propranolol, metoprolol, atenolol, pindolol, alprenolol and timolol, manifest atherogenicity on in vitro, ex vivo and in vivo models. Elimination of propranolol atherogenic effects by papaverine. Atherosclerosis, 1992, 95, 77-85.	0.8	10
246	Desialylated low density lipoprotein - naturally occurring modified lipoprotein with atherogenic potency. Atherosclerosis, 1991, 86, 153-161.	0.8	113
247	Lipids in cells of atherosclerotic and uninvolved human aorta. Experimental and Molecular Pathology, 1991, 54, 22-30.	2.1	20
248	In vitro models of antiatherosclerotic effects of cardiovascular drugs. American Journal of Cardiology, 1990, 66, 23-28.	1.6	121
249	Correlation between cholesterol content in circulating immune complexes and atherogenic properties of CHD patients' serum manifested in cell culture. Atherosclerosis, 1990, 81, 183-189.	0.8	42
250	Isolation of atherogenic modified (desialylated) low density lipoprotein from blood of atherosclerotic patients: Separation from native lipoprotein by affinity chromatography. Biochemical and Biophysical Research Communications, 1990, 167, 1122-1127.	2.1	77
251	Low-density lipoproteins isolated from the blood of patients with coronary heart disease induce the accumulation of lipids in human aortic cells. Experimental and Molecular Pathology, 1989, 50, 337-347.	2.1	67
252	Neutral glycolipids of atherosclerotic plaques and unaffected human aorta tissue. FEBS Journal, 1989, 180, 167-171.	0.2	9

#	Article	IF	CITATIONS
253	Insolubilization of low density lipoprotein induces cholesterol accumulation in cultured subendothelial cells of human aorta. Atherosclerosis, 1989, 79, 59-70.	0.8	29
254	Ganglioside content and composition of cells from normal and atherosclerotic human aorta. Atherosclerosis, 1989, 78, 39-45.	0.8	25
255	Lipoprotein aggregation as an essential condition of intracellular lipid accumulation caused by modified low density lipoproteins. Biochemical and Biophysical Research Communications, 1989, 163, 489-494.	2.1	120
256	Atherogenic effects of beta blockers on cells cultured from normal and atherosclerotic aorta. American Journal of Cardiology, 1988, 61, 1116-1117.	1.6	17
257	Association of low-density lipoprotein with particulate connective tissue matrix components enhances cholesterol accumulation in cultured subendothelial cells of human aorta. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 928, 251-258.	4.1	33
258	Evidence of antiatherosclerotic action of verapamil from direct effects on arterial cells. American Journal of Cardiology, 1987, 59, 495-496.	1.6	45
259	The gangliosides of adult human aorta: intima, media and plaque. FEBS Journal, 1987, 167, 349-352.	0.2	34
260	Lowâ€Density Lipoprotein Apheresis and Regression of Atherosclerotic Plaque In Vitro. Artificial Organs, 1986, 10, 466-469.	1.9	4
261	Effect of cyclic AMP on lipid accumulation and metabolism in human atherosclerotic aortic cells. Atherosclerosis, 1986, 62, 55-64.	0.8	14
262	Adult human aortic cells in primary culture: heterogeneity in shape. Heart and Vessels, 1986, 2, 193-201.	1.2	24
263	Primary RIA screening of hybridoma supernatants without use of a negative control. Journal of Immunological Methods, 1985, 77, 343-345.	1.4	1
264	Potential use of buccal epithelium for genetic diagnosis of atherosclerosis using mtDNA mutations. Vessel Plus, 0, , .	0.4	14
265	New markers of atherosclerosis: a threshold level of heteroplasmy in mtDNA mutations. Vessel Plus, 0, , .	0.4	8
266	Is insulin pro-atherogenic at the cellular level?. Vessel Plus, 0, , .	0.4	1
267	Chemical composition of circulating native and desialylated low density lipoprotein: what is the difference?. Vessel Plus, 0, , .	0.4	23
268	Introduction of the special issue $\hat{a} \in \hat{\infty}$ Atherosclerosis and Related Diseases $\hat{a} \in \hat{\bullet}$ Vessel Plus, 0, , .	0.4	14
269	Mitochondrial mutations associated with cardiac angina. Vessel Plus, 0, 2019, .	0.4	2
270	Profiling of risk of subclinical atherosclerosis: possible interplay of genetic and environmental factors as the update of conventional approach. Vessel Plus, 0, 2019, .	0.4	1