
Jinyou Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3983709/publications.pdf Version: 2024-02-01

Ιμνου Shao

#	Article	IF	CITATIONS
1	Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiO _{<i>x</i>} Hole Contacts. ACS Nano, 2016, 10, 3630-3636.	14.6	426
2	Highâ€Performance Piezoelectric Nanogenerators with Imprinted P(VDFâ€TrFE)/BaTiO ₃ Nanocomposite Micropillars for Selfâ€Powered Flexible Sensors. Small, 2017, 13, 1604245.	10.0	329
3	Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays. ACS Applied Materials & Interfaces, 2019, 11, 17796-17803.	8.0	292
4	Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. Journal of Materials Chemistry C, 2015, 3, 11806-11814.	5.5	171
5	A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling. Nanoscale, 2015, 7, 11536-11544.	5.6	159
6	Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle. ACS Applied Materials & Interfaces, 2018, 10, 8307-8316.	8.0	147
7	A Stretchable and Transparent Nanocomposite Nanogenerator for Self-Powered Physiological Monitoring. ACS Applied Materials & Interfaces, 2017, 9, 42200-42209.	8.0	131
8	High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nature Communications, 2018, 9, 2578.	12.8	121
9	Flexible and Transparent Strain Sensors with Embedded Multiwalled Carbon Nanotubes Meshes. ACS Applied Materials & Interfaces, 2017, 9, 40681-40689.	8.0	114
10	Engineering the Exciton Dissociation in Quantum onfined 2D CsPbBr ₃ Nanosheet Films. Advanced Functional Materials, 2018, 28, 1705908.	14.9	98
11	Nanoimprint lithography for the manufacturing of flexible electronics. Science China Technological Sciences, 2019, 62, 175-198.	4.0	88
12	Decreasing the Saturated Contact Angle in Electrowettingâ€onâ€Dielectrics by Controlling the Charge Trapping at Liquid–Solid Interfaces. Advanced Functional Materials, 2016, 26, 2994-3002.	14.9	86
13	Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting. Nano Energy, 2019, 64, 103904.	16.0	85
14	Induced-charge electroosmotic trapping of particles. Lab on A Chip, 2015, 15, 2181-2191.	6.0	82
15	Semi-Transparent ZnO-Cul/CuSCN Photodiode Detector with Narrow-Band UV Photoresponse. ACS Applied Materials & Interfaces, 2015, 7, 21235-21244.	8.0	66
16	Electrically Templated Dewetting of a UV-Curable Prepolymer Film for the Fabrication of a Concave Microlens Array with Well-Defined Curvature. ACS Applied Materials & Interfaces, 2013, 5, 9975-9982.	8.0	63
17	Switchable Dry Adhesion with Step-like Micropillars and Controllable Interfacial Contact. ACS Applied Materials & Interfaces, 2016, 8, 10029-10037.	8.0	58
18	A Flexible Piezoelectric-Pyroelectric Hybrid Nanogenerator Based on P(VDF-TrFE) Nanowire Array. IEEE Nanotechnology Magazine, 2016, 15, 295-302.	2.0	55

#	Article	IF	CITATIONS
19	Spray-Coated CsPbBr ₃ Quantum Dot Films for Perovskite Photodiodes. ACS Applied Materials & Interfaces, 2018, 10, 26387-26395.	8.0	54
20	3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors. Nano Energy, 2020, 77, 105300.	16.0	54
21	Numerical Characterization of Electrohydrodynamic Micro- or Nanopatterning Processes Based on a Phase-Field Formulation of Liquid Dielectrophoresis. Langmuir, 2013, 29, 4703-4714.	3.5	53
22	Generation of Fullyâ€Covering Hierarchical Microâ€/Nano―Structures by Nanoimprinting and Modified Laser Swelling. Small, 2014, 10, 2595-2601.	10.0	53
23	Switchable Adhesion for Nonflat Surfaces Mimicking Geckos' Adhesive Structures and Toe Muscles. ACS Applied Materials & Interfaces, 2020, 12, 39745-39755.	8.0	50
24	Fabrication of Microlens Arrays with Wellâ€controlled Curvature by Liquid Trapping and Electrohydrodynamic Deformation in Microholes. Advanced Materials, 2012, 24, OP165-9, OP90.	21.0	48
25	Discretely Supported Dry Adhesive Film Inspired by Biological Bending Behavior for Enhanced Performance on a Rough Surface. ACS Applied Materials & Interfaces, 2017, 9, 7752-7760.	8.0	47
26	Shape-programmable, deformation-locking, and self-sensing artificial muscle based on liquid crystal elastomer and low–melting point alloy. Science Advances, 2022, 8, eabn5722.	10.3	46
27	Scalable Imprinting of Flexible Multiplexed Sensor Arrays with Distributed Piezoelectricityâ€Enhanced Micropillars for Dynamic Tactile Sensing. Advanced Materials Technologies, 2020, 5, 2000046.	5.8	45
28	An Electrically Actuated Soft Artificial Muscle Based on a High-Performance Flexible Electrothermal Film and Liquid-Crystal Elastomer. ACS Applied Materials & Interfaces, 2020, 12, 56338-56349.	8.0	44
29	Highâ€Performance Packaged 3D Lithiumâ€Ion Microbatteries Fabricated Using Imprint Lithography. Advanced Materials, 2021, 33, e2006229.	21.0	43
30	Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes. Optics Letters, 2011, 36, 4083.	3.3	39
31	One-Dimensional Au–ZnO Heteronanostructures for Ultraviolet Light Detectors by a Two-Step Dielectrophoretic Assembly Method. ACS Applied Materials & Interfaces, 2015, 7, 12713-12718.	8.0	38
32	An electrically active gecko-effect soft gripper under a low voltage by mimicking gecko's adhesive structures and toe muscles. Soft Matter, 2020, 16, 5599-5608.	2.7	38
33	Improved triboelectrification effect by bendable and slidable fish-scale-like microstructures. Nano Energy, 2017, 40, 646-654.	16.0	37
34	Flexible all-inorganic photoconductor detectors based on perovskite/hole-conducting layer heterostructures. Journal of Materials Chemistry C, 2018, 6, 6739-6746.	5.5	36
35	Nanoscale Electrodes for Flexible Electronics by Swelling Controlled Cracking. Advanced Materials, 2016, 28, 6337-6344.	21.0	34
36	Influence of Induced-Charge Electrokinetic Phenomena on the Dielectrophoretic Assembly of Gold Nanoparticles in a Conductive-Island-Based Microelectrode System. Langmuir, 2013, 29, 12093-12103.	3.5	32

#	Article	IF	CITATIONS
37	Dielectrophoretic-Assembled Single and Parallel-Aligned Ag Nanowire–ZnO-Branched Nanorod Heteronanowire Ultraviolet Photodetectors. ACS Applied Materials & Interfaces, 2017, 9, 22837-22845.	8.0	31
38	On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics. Biomicrofluidics, 2016, 10, 034105.	2.4	30
39	Bioinspired Hierarchical Structures for Contact‧ensible Adhesives. Advanced Functional Materials, 2022, 32, 2109076.	14.9	30
40	Friction Contribution to Bioinspired Mushroomâ€Shaped Dry Adhesives. Advanced Materials Interfaces, 2017, 4, 1700016.	3.7	29
41	Geckoâ€Effect Inspired Soft Gripper with High and Switchable Adhesion for Rough Surfaces. Advanced Materials Interfaces, 2019, 6, 1900875.	3.7	29
42	Fabricating hierarchical micro and nano structures on implantable Co–Cr–Mo alloy for tissue engineering by one-step laser ablation. Colloids and Surfaces B: Biointerfaces, 2018, 161, 628-635.	5.0	27
43	Formation of irregular micro- or nano-structure with features of varying size by spatial fine-modulation of electric field. Soft Matter, 2013, 9, 8033.	2.7	26
44	Electrically Modulated Microtransfer Molding for Fabrication of Micropillar Arrays with Spatially Varying Heights. Langmuir, 2013, 29, 1351-1355.	3.5	26
45	Electrohydrodynamic Pressure Enhanced by Free Space Charge for Electrically Induced Structure Formation with High Aspect Ratio. Langmuir, 2014, 30, 12654-12663.	3.5	26
46	A general route to enhance the fluorescence of graphene quantum dots by Ag nanoparticles. RSC Advances, 2014, 4, 21772-21776.	3.6	26
47	Rectangle-capped and tilted micropillar array for enhanced anisotropic anti-shearing in biomimetic adhesion. Journal of the Royal Society Interface, 2015, 12, 20150090.	3.4	26
48	Electrowetting Assisted Air Detrapping in Transfer Micromolding for Difficult-to-Mold Microstructures. ACS Applied Materials & amp; Interfaces, 2014, 6, 12737-12743.	8.0	25
49	Step-Controllable Electric-Field-Assisted Nanoimprint Lithography for Uneven Large-Area Substrates. ACS Nano, 2016, 10, 4354-4363.	14.6	25
50	AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range. Applied Surface Science, 2016, 370, 184-192.	6.1	25
51	Channel-Crack-Designed Suspended Sensing Membrane as a Fully Flexible Vibration Sensor with High Sensitivity and Dynamic Range. ACS Applied Materials & Interfaces, 2021, 13, 34637-34647.	8.0	24
52	Self-healing and stretchable conductor based on embedded liquid metal patterns within imprintable dynamic covalent elastomer. Journal of Materials Chemistry C, 2022, 10, 1039-1047.	5.5	23
53	ZnO/TiO2 nanohexagon arrays heterojunction photoanode for enhancing power conversion efficiency in dye-sensitized solar cells. Journal of Alloys and Compounds, 2016, 685, 610-618.	5.5	22
54	New architecture of a petal-shaped Nb2O5 nanosheet film on FTO glass for high photocatalytic activity. RSC Advances, 2016, 6, 9581-9588.	3.6	22

Jinyou Shao

#	Article	IF	CITATIONS
55	Hybrid nanostructure of SiO ₂ @Si with Au-nanoparticles for surface enhanced Raman spectroscopy. Nanoscale, 2019, 11, 13484-13493.	5.6	21
56	Damage mechanism and morphology characteristics of chromium film in femtosecond laser rear-side ablation. Applied Surface Science, 2010, 256, 3612-3617.	6.1	20
57	<i>Dytiscus lapponicus</i> -Inspired Structure with High Adhesion in Dry and Underwater Environments. ACS Applied Materials & amp; Interfaces, 2021, 13, 42287-42296.	8.0	20
58	Numerical analysis of the Rayleigh–Taylor instability in an electric field. Journal of Fluid Mechanics, 2016, 792, 397-434.	3.4	18
59	Generation of Hierarchically Ordered Structures on a Polymer Film by Electrohydrodynamic Structure Formation. ACS Applied Materials & amp; Interfaces, 2016, 8, 16419-16427.	8.0	18
60	Adhesion Circle: A New Approach To Better Characterize Directional Gecko-Inspired Dry Adhesives. ACS Applied Materials & Interfaces, 2017, 9, 3060-3067.	8.0	18
61	Suspended-Template Electric-Assisted Nanoimprinting for Hierarchical Micro-Nanostructures on a Fragile Substrate. ACS Nano, 2019, 13, 10333-10342.	14.6	18
62	High performance solid-state supercapacitors based on highly conductive organogel electrolyte at low temperature. Journal of Power Sources, 2022, 524, 231102.	7.8	17
63	Periodic Parallel Array of Nanopillars and Nanoholes Resulting from Colloidal Stripes Patterned by Geometrically Confined Evaporative Self-Assembly for Unique Anisotropic Wetting. ACS Applied Materials & Interfaces, 2014, 6, 20300-20308.	8.0	16
64	Steady State of Electrohydrodynamic Patterning of Micro/Nanostructures on Thin Polymer Films. Industrial & Engineering Chemistry Research, 2014, 53, 12720-12728.	3.7	16
65	Tuning the Mechanical and Electrical Properties of Porous Electrodes for Architecting 3D Microsupercapacitors with Batteries‣evel Energy. Advanced Science, 2021, 8, e2004957.	11.2	16
66	Improving the height of replication in EHD patterning by optimizing the electrical properties of the template. Journal of Micromechanics and Microengineering, 2011, 21, 115004.	2.6	15
67	Microlens Arrays: Fabrication of Microlens Arrays with Well-controlled Curvature by Liquid Trapping and Electrohydrodynamic Deformation in Microholes (Adv. Mater. 23/2012). Advanced Materials, 2012, 24, OP90-OP90.	21.0	15
68	High-Performance Transparent and Conductive Films with Fully Enclosed Metal Mesh. ACS Applied Materials & Interfaces, 2021, 13, 40806-40816.	8.0	15
69	LiYF ₄ :Yb ³⁺ , Er ³⁺ upconverting submicro-particles: synthesis and formation mechanism exploration. RSC Advances, 2014, 4, 40223-40231.	3.6	14
70	High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs. Applied Surface Science, 2016, 386, 405-411.	6.1	14
71	Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites. Acta Mechanica Sinica/Lixue Xuebao, 2020, 36, 855-865.	3.4	14
72	Gecko-Inspired Slant Hierarchical Microstructure-Based Ultrasensitive Iontronic Pressure Sensor for Intelligent Interaction. Research, 2022, 2022, .	5.7	14

#	Article	IF	CITATIONS
73	Simulation of polymer rheology in an electrically induced micro- or nano-structuring process based on electrohydrodynamics and conservative level set method. RSC Advances, 2014, 4, 21672.	3.6	13
74	Batch fabrication of nanogap electrodes arrays with controllable cracking for hydrogen sensing. Sensors and Actuators B: Chemical, 2018, 270, 475-481.	7.8	13
75	Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages. Scientific Reports, 2016, 6, 29476.	3.3	12
76	Multilayered Dual Functional SiO2@Au@SiO2@QD Nanoparticles for Simultaneous Intracellular Heating and Temperature Measurement. Langmuir, 2019, 35, 6367-6378.	3.5	12
77	Wafer-Scale and Cost-Effective Manufacturing of Controllable Nanogap Arrays for Highly Sensitive SERS Sensing. ACS Applied Materials & amp; Interfaces, 2022, 14, 3580-3590.	8.0	12
78	Physical deoxygenation of graphene oxide paper surface and facile in situ synthesis of graphene based ZnO films. Applied Physics Letters, 2014, 105, 233106.	3.3	11
79	Flexible strain sensor based on embedded three-dimensional annular cracks with high mechanical robustness and high sensitivity. Applied Materials Today, 2021, 25, 101247.	4.3	11
80	Effects of UV radiation on the preparation of polypyrrole in the presence of hydrogen peroxide. Radiation Effects and Defects in Solids, 2015, 170, 821-831.	1.2	10
81	Ceiling temperature and photothermalsensitivity of aqueous MSA-CdTe quantum dots thermometers. Applied Surface Science, 2017, 394, 554-561.	6.1	10
82	Flexible Double-Sided Light-Emitting Devices Based on Transparent Embedded Interdigital Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 43892-43900.	8.0	10
83	Microbowl-arrayed surface generated by EBL of negative-tone SU-8 for highly adhesive hydrophobicity. Applied Surface Science, 2014, 307, 365-371.	6.1	9
84	Shape-controllable plano-convex lenses with enhanced transmittance via electrowetting on a nanotextured dielectric. Journal of Materials Chemistry C, 2016, 4, 9162-9166.	5.5	9
85	A photocurable leaky dielectric for highly electrical insulating electrohydrodynamic micro-/nanopatterns. Soft Matter, 2016, 12, 8819-8824.	2.7	9
86	Photoresponse Performance Evaluation of ZnO UV Photodetector Based on Noise Analysis. IEEE Sensors Journal, 2017, 17, 4447-4453.	4.7	9
87	Influence of distorted electric field distribution on microstructure formation in the electrohydrodynamic patterning process. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 041606.	1.2	8
88	Preparation, properties, and efficient electrically induced structure formation of a leaky dielectric photoresist. RSC Advances, 2016, 6, 82450-82458.	3.6	8
89	Facile Fabrication of Electrohydrodynamic Microâ€∤Nanostructures with High Aspect Ratio of a Conducting Polymer for Large cale Superhydrophilic/Superhydrophobic Surfaces. Macromolecular Materials and Engineering, 2018, 303, 1700361.	3.6	8
90	High-transmittance and focal controllable plano-convex lenses with embedded nanolens bottoms formed by electrowetting on a colloidal monolayer. Journal of Materials Chemistry C, 2020, 8, 2659-2663.	5.5	8

#	Article	IF	CITATIONS
91	Scalable fabrication of high-performance micro-supercapacitors by embedding thick interdigital microelectrodes into microcavities. Nanoscale, 2019, 11, 19772-19782.	5.6	7
92	Discretely-supported nanoimprint lithography for patterning the high-spatial-frequency stepped surface. Nano Research, 2021, 14, 2606-2612.	10.4	7
93	Metal Micropatterning by Triboelectric Spark Discharge. Advanced Functional Materials, 2022, 32, .	14.9	7
94	Role of space charges inside a dielectric polymer in the electrohydrodynamic structure formation on a prepatterned polymer (ESF-PP). RSC Advances, 2016, 6, 77275-77283.	3.6	6
95	Effect of island shape on dielectrophoretic assembly of metal nanoparticle chains in a conductive-island-based microelectrode system. Applied Surface Science, 2015, 330, 178-184.	6.1	5
96	Particle clustering during pearl chain formation in a conductive-island based dielectrophoretic assembly system. RSC Advances, 2015, 5, 5523-5532.	3.6	5
97	Numerical investigation of polymer rheology in electrohydrodynamic structuring on geometrical dielectric (ESGD) process. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	5
98	Facile Fabrication of a Flexible Patterned Film with Diverse Micro-/Nanostructures via Electrohydrodynamic Patterning. Industrial & Engineering Chemistry Research, 2021, 60, 314-323.	3.7	5
99	Compact 3D Metal Collectors Enabled by Rollâ€ŧoâ€Roll Nanoimprinting for Improving Capacitive Energy Storage. Small Methods, 2022, 6, e2101539.	8.6	5
100	Large area assembly of patterned nanoparticles by a polydimethylsiloxane template. Science China Materials, 2015, 58, 884-892.	6.3	4
101	Investigation of the role of template features on the electrically induced structure formation (EISF) for a faithful duplication. Electrophoresis, 2017, 38, 1105-1112.	2.4	4
102	Role of geometric shapes on the load transfer in graphene-PMMA nanocomposites. Computational Materials Science, 2020, 184, 109863.	3.0	4
103	A facile method to fabricate surfaces showing superhydrophilicity in air and superhydrophobicity in oil. Science China Technological Sciences, 2017, 60, 1724-1731.	4.0	3
104	Nanoimprinting metal-containing nanoparticle-doped gratings to enhance the polarization of light-emitting chips by induced scattering. Nanotechnology, 2021, 32, 235304.	2.6	3
105	Making high-fidelity imprint template by resist patterns over a flexible conductive polymer substrate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 86-89.	1.2	2
106	Nanoscale Electrodes: Nanoscale Electrodes for Flexible Electronics by Swelling Controlled Cracking (Adv. Mater. 30/2016). Advanced Materials, 2016, 28, 6516-6516.	21.0	2
107	Titania–silica hybrid films derived by a sol–gel process for organic field effect transistors. Journal of Sol-Gel Science and Technology, 2017, 83, 666-674.	2.4	2
108	Pattern formation in thin polymeric films <i>via</i> electrohydrodynamic patterning. RSC Advances, 2022, 12, 9681-9697.	3.6	2

Jinyou Shao

#	Article	IF	CITATIONS
109	Soft Gripper: Geckoâ€Effect Inspired Soft Gripper with High and Switchable Adhesion for Rough Surfaces (Adv. Mater. Interfaces 18/2019). Advanced Materials Interfaces, 2019, 6, 1970119.	3.7	1
110	Facile fabrication of flexible concave microlens arrays with a well-controlled curvature. Materials Chemistry Frontiers, 2021, 5, 7759-7766.	5.9	1
111	Metal Micropatterning by Triboelectric Spark Discharge (Adv. Funct. Mater. 1/2022). Advanced Functional Materials, 2022, 32, .	14.9	1
112	Influence of Template Geometry on Polymer Micro-Structure Duplication in Electrohydrodynamics Patterning Process. Journal of Macromolecular Science - Physics, 2012, 51, 1537-1547.	1.0	0
113	Formation of Arbitrary Patterns in Ultraviolet Cured Polymer Film via Electrohydrodynamic Patterning. Scientific World Journal, The, 2014, 2014, 1-9.	2.1	0