Jie Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3983677/publications.pdf

Version: 2024-02-01

		687363	552781
30	754	13	26
papers	citations	h-index	g-index
30 all docs	30 docs citations	30 times ranked	961 citing authors

#	Article	IF	CITATIONS
1	Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage. Brain, 2011, 134, 415-431.	7.6	207
2	Objects and Categories: Feature Statistics and Object Processing in the Ventral Stream. Journal of Cognitive Neuroscience, 2013, 25, 1723-1735.	2.3	105
3	Age-related sensitivity to task-related modulation of language-processing networks. Neuropsychologia, 2014, 63, 107-115.	1.6	51
4	The Interaction of Lexical Semantics and Cohort Competition in Spoken Word Recognition: An fMRI Study. Journal of Cognitive Neuroscience, 2011, 23, 3778-3790.	2.3	48
5	Optimally Efficient Neural Systems for Processing Spoken Language. Cerebral Cortex, 2014, 24, 908-918.	2.9	43
6	Semantic processing of Chinese in left inferior prefrontal cortex studied with reversible words. Neurolmage, 2004, 23, 975-982.	4.2	34
7	The Neural Language Systems That Support Healthy Aging: Integrating Function, Structure, and Behavior. Language and Linguistics Compass, 2016, 10, 314-334.	2.3	33
8	Modular Assembly of Tumorâ€Penetrating and Oligomeric Nanozyme Based on Intrinsically Selfâ€Assembling Protein Nanocages. Advanced Materials, 2021, 33, e2103128.	21.0	27
9	Biomimetic Design of Artificial Hybrid Nanocells for Boosted Vascular Regeneration in Ischemic Tissues. Advanced Materials, 2022, 34, e2110352.	21.0	27
10	Bioorthogonal catalytic nanozyme-mediated lysosomal membrane leakage for targeted drug delivery. Theranostics, 2022, 12, 1132-1147.	10.0	24
11	Probing demyelination and remyelination of the cuprizone mouse model using multimodality MRI. Journal of Magnetic Resonance Imaging, 2019, 50, 1852-1865.	3.4	21
12	MoDL-QSM: Model-based deep learning for quantitative susceptibility mapping. NeuroImage, 2021, 240, 118376.	4.2	20
13	Zero-Shot Learning for EEG Classification in Motor Imagery-Based BCI System. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2411-2419.	4.9	18
14	Temporal Interference (TI) Stimulation Boosts Functional Connectivity in Human Motor Cortex: A Comparison Study with Transcranial Direct Current Stimulation (tDCS). Neural Plasticity, 2022, 2022, 1-7.	2.2	15
15	Age-related differences in resolving semantic and phonological competition during receptive language tasks. Neuropsychologia, 2016, 93, 189-199.	1.6	13
16	Language processing in age-related macular degeneration associated with unique functional connectivity signatures in the right hemisphere. Neurobiology of Aging, 2018, 63, 65-74.	3.1	13
17	Written distractor words influence brain activity during overt picture naming. Frontiers in Human Neuroscience, 2014, 8, 167.	2.0	12
18	Cerebral white matter connectivity, cognition, and age-related macular degeneration. Neurolmage: Clinical, 2021, 30, 102594.	2.7	11

#	Article	IF	Citations
19	Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-11.	1.3	7
20	Phonological and syntactic competition effects in spoken word recognition: evidence from corpus-based statistics. Language, Cognition and Neuroscience, 2017, 32, 221-235.	1.2	5
21	Relationship between neural functional connectivity and memory performance in age-related macular degeneration. Neurobiology of Aging, 2020, 95, 176-185.	3.1	5
22	Prosody and lemma selection. Memory and Cognition, 2005, 33, 862-870.	1.6	4
23	Phonemic Fluency and Brain Connectivity in Age-Related Macular Degeneration: A Pilot Study. Brain Connectivity, 2015, 5, 126-135.	1.7	3
24	Relating Sensory, Cognitive, and Neural Factors to Older Persons' Perceptions about Happiness: An Exploratory Study. Journal of Aging Research, 2018, 2018, 1-11.	0.9	3
25	Cross-Modal Transfer Learning From EEG to Functional Near-Infrared Spectroscopy for Classification Task in Brain-Computer Interface System. Frontiers in Psychology, 2022, 13, 833007.	2.1	3
26	Regularized Asymmetric Susceptibility Tensor Imaging in the Human Brain in Vivo. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4508-4518.	6.3	2
27	Neural Substrates of the Morphological Structure of Chinese Words. Mathematical Problems in Engineering, 2021, 2021, 1-7.	1.1	O
28	Default-Mode Network Activity Identified by Group Independent Component Analysis. Lecture Notes in Computer Science, 2007, , 222-233.	1.3	0
29	Age-Related Macular Degeneration and the Aging Brain. Innovation in Aging, 2021, 5, 156-156.	0.1	O
30	Comparisons of Glutamate in the Brains of Alzheimer's Disease Mice Under Chemical Exchange Saturation Transfer Imaging Based on Machine Learning Analysis. Frontiers in Neuroscience, 2022, 16, 838157.	2.8	0