Katel Hervé-Aubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3983373/publications.pdf

Version: 2024-02-01

		933447	1125743
13	349	10	13
papers	citations	h-index	g-index
13	13	13	726
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Two-step formulation of magnetic nanoprobes for microRNA capture. RSC Advances, 2022, 12, 7179-7188.	3.6	3
2	Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics, 2022, 14, 1235.	4.5	8
3	Targeted nanomedicine with anti-EGFR scFv for siRNA delivery into triple negative breast cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 74-84.	4.3	13
4	gH625 Cell-Penetrating Peptide Promotes the Endosomal Escape of Nanovectorized siRNA in a Triple-Negative Breast Cancer Cell Line. Biomacromolecules, 2019, 20, 3076-3086.	5.4	20
5	Targeting HER2-breast tumors with scFv-decorated bimodal nanoprobes. Journal of Nanobiotechnology, 2018, 16, 18.	9.1	21
6	Impact of Site-Specific Conjugation of ScFv to Multifunctional Nanomedicines Using Second Generation Maleimide. Bioconjugate Chemistry, 2018, 29, 1553-1559.	3.6	10
7	Formulation and in vitro evaluation of a siRNA delivery nanosystem decorated with gH625 peptide for triple negative breast cancer theranosis. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 131, 99-108.	4.3	41
8	Synthesis and in vitro evaluation of fluorescent and magnetic nanoparticles functionalized with a cell penetrating peptide for cancer theranosis. Journal of Colloid and Interface Science, 2017, 499, 209-217.	9.4	48
9	Covalent conjugation of cysteine-engineered scFv to PEGylated magnetic nanoprobes for immunotargeting of breast cancer cells. RSC Advances, 2016, 6, 37099-37109.	3.6	18
10	Polyethylene-glycol-Stabilized Ag Nanoparticles for Surface-Enhanced Raman Scattering Spectroscopy: Ag Surface Accessibility Studied Using Metalation of Free-Base Porphyrins. Journal of Physical Chemistry C, 2014, 118, 7690-7697.	3.1	35
11	Use of experimental design methodology for the development of new magnetic siRNA nanovectors (MSN). International Journal of Pharmaceutics, 2013, 454, 660-667.	5.2	10
12	Colloidal stability and thermo-responsive properties of iron oxide nanoparticles coated with polymers: advantages of Pluronic [®] F68–PEG mixture. Nanotechnology, 2013, 24, 395605.	2.6	11
13	Magnetic Nanocarriers of Doxorubicin Coated with Poly(ethylene glycol) and Folic Acid: Relation between Coating Structure, Surface Properties, Colloidal Stability, and Cancer Cell Targeting. Langmuir, 2012, 28, 1496-1505.	3.5	111