Martin T Tinker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3982857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seabird meta-Population Viability Model (mPVA) methods. MethodsX, 2022, 9, 101599.	1.6	3
2	INVESTIGATING ASSOCIATIONS AMONG RELATEDNESS, GENETIC DIVERSITY, AND CAUSES OF MORTALITY IN SOUTHERN SEA OTTERS (ENHYDRA LUTRIS NEREIS). Journal of Wildlife Diseases, 2022, 58, .	0.8	0
3	Characterizing the oral and distal gut microbiota of the threatened southern sea otter (<i>Enhydra) Tj ETQq1 1 0</i>	.784314 r 2.0	gBT /Overloc
4	Southeast Alaskan kelp forests: inferences of process from large-scale patterns of variation in space and time. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211697.	2.6	4
5	Status, trends, and equilibrium abundance estimates of the translocated sea otter population in Washington State. Journal of Wildlife Management, 2022, 86, .	1.8	2
6	Alternations in the foraging behaviour of a primary consumer drive patch transition dynamics in a temperate rocky reef ecosystem. Ecology Letters, 2022, 25, 1827-1838.	6.4	8
7	Surrogate rearing a keystone species to enhance population and ecosystem restoration. Oryx, 2021, 55, 535-545.	1.0	20
8	Habitat Features Predict Carrying Capacity of a Recovering Marine Carnivore. Journal of Wildlife Management, 2021, 85, 303-323.	1.8	14
9	Behavioral responses across a mosaic of ecosystem states restructure a sea otter–urchin trophic cascade. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	46
10	Clinical Signs and Pathology Associated With Domoic Acid Toxicosis in Southern Sea Otters (Enhydra) Tj ETQq0 (0 0 rgBT /0 2.9	Overlock 10 T
11	Translocations maintain genetic diversity and increase connectivity in sea otters, Enhydra lutris. Marine Mammal Science, 2021, 37, 1475-1497.	1.8	3
12	Sea otter population collapse in southwest Alaska: assessing ecological covariates, consequences, and causal factors. Ecological Monographs, 2021, 91, e01472.	5.4	13
13	Exposure to domoic acid is an ecological driver of cardiac disease in southern sea otters✰. Harmful Algae, 2021, 101, 101973.	4.8	20
14	Physical disturbance by recovering sea otter populations increases eelgrass genetic diversity. Science, 2021, 374, 333-336.	12.6	12
15	Predators, Disease, and Environmental Change in the Nearshore Ecosystem: Mortality in Southern Sea Otters (Enhydra lutris nereis) From 1998–2012. Frontiers in Marine Science, 2020, 7, .	2.5	25
16	Robust age estimation of southern sea otters from multiple morphometrics. Ecology and Evolution, 2020, 10, 8592-8609.	1.9	11
17	Keystone predators govern the pathway and pace of climate impacts in a subarctic marine ecosystem. Science, 2020, 369, 1351-1354.	12.6	43

18Spatial epidemiological patterns suggest mechanisms of land-sea transmission for Sarcocystis
neurona in a coastal marine mammal. Scientific Reports, 2020, 10, 3683.3.39

#	Article	IF	CITATIONS
19	Reductions in the dietary niche of southern sea otters (<i>Enhydra lutris nereis</i>) from the Holocene to the Anthropocene. Ecology and Evolution, 2020, 10, 3318-3329.	1.9	10
20	Characterizing the impact of recovering sea otters on commercially important crabs in California estuaries. Marine Ecology - Progress Series, 2020, 655, 123-137.	1.9	3
21	Trends and Carrying Capacity of Sea Otters in Southeast Alaska. Journal of Wildlife Management, 2019, 83, 1073-1089.	1.8	29
22	Locationâ€specific factors influence patterns and effects of subsistence sea otter harvest in Southeast Alaska. Ecosphere, 2019, 10, e02874.	2.2	7
23	Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant Otter. Molecular Biology and Evolution, 2019, 36, 2631-2655.	8.9	48
24	Sex and occupation time influence niche space of a recovering keystone predator. Ecology and Evolution, 2019, 9, 3321-3334.	1.9	14
25	Wild sea otter mussel pounding leaves archaeological traces. Scientific Reports, 2019, 9, 4417.	3.3	8
26	Influence of occupation history and habitat on Washington sea otter diet. Marine Mammal Science, 2019, 35, 1369-1395.	1.8	11
27	Species recovery and recolonization of past habitats: lessons for science and conservation from sea otters in estuaries. PeerJ, 2019, 7, e8100.	2.0	16
28	Gaps in kelp cover may threaten the recovery of California sea otters. Ecography, 2018, 41, 1751-1762.	4.5	20
29	Ecosystem features determine seagrass community response to sea otter foraging. Marine Pollution Bulletin, 2018, 134, 134-144.	5.0	19
30	Lactation and resource limitation affect stress responses, thyroid hormones, immune function, and antioxidant capacity of sea otters (Enhydra lutris). Ecology and Evolution, 2018, 8, 8433-8447.	1.9	12
31	Active touch in sea otters: in-air and underwater texture discrimination thresholds and behavioral strategies for paws and vibrissae. Journal of Experimental Biology, 2018, 221, .	1.7	15
32	Sudden collapse of a mesopredator reveals its complementary role in mediating rocky reef regime shifts. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180553.	2.6	79
33	Are the ghosts of nature's past haunting ecology today?. Current Biology, 2018, 28, R532-R537.	3.9	43
34	Defining the risk landscape in the context of pathogen pollution: Toxoplasma gondii in sea otters along the Pacific Rim. Royal Society Open Science, 2018, 5, 171178.	2.4	19
35	Stability and Change in Kelp Forest Habitats at San Nicolas Island. Western North American Naturalist, 2018, 78, 633.	0.4	9
36	Mitogenomes and relatedness do not predict frequency of tool-use by sea otters. Biology Letters, 2017, 13, 20160880.	2.3	7

#	Article	IF	CITATIONS
37	Asynchrony in craniomandibular development and growth in Enhydra lutris nereis (Carnivora:) Tj ETQq1 1 0.7843 420-438.	14 rgBT /C 1.6)verlock 10 9
38	Food abundance, prey morphology, and diet specialization influence individual sea otter tool use. Behavioral Ecology, 2017, 28, 1206-1216.	2.2	15
39	Predicting animal homeâ€range structure and transitions using a multistate Ornsteinâ€Uhlenbeck biased random walk. Ecology, 2017, 98, 32-47.	3.2	36
40	Concentration and retention of <i>Toxoplasma gondii</i> surrogates from seawater by red abalone (<i>Haliotis rufescens</i>). Parasitology, 2016, 143, 1703-1712.	1.5	12
41	THE HIGH COST OF MOTHERHOOD: END-LACTATION SYNDROME IN SOUTHERN SEA OTTERS (ENHYDRA) TJ ETQ	1,1,0.784 0.8	4314 rgBT /
42	Dramatic increase in sea otter mortality from white sharks in California. Marine Mammal Science, 2016, 32, 309-326.	1.8	64
43	Trade-offs between energy maximization and parental care in a central place forager, the sea otter. Behavioral Ecology, 2016, 27, 1552-1566.	2.2	30
44	Permissible Home Range Estimation (PHRE) in Restricted Habitats: A New Algorithm and an Evaluation for Sea Otters. PLoS ONE, 2016, 11, e0150547.	2.5	36
45	Concentration and retention of <scp><i>T</i></scp> <i>oxoplasma gondii</i> oocysts by marine snails demonstrate a novel mechanism for transmission of terrestrial zoonotic pathogens in coastal ecosystems. Environmental Microbiology, 2015, 17, 4527-4537.	3.8	21
46	Effects of wildfire on sea otter (<i>Enhydra lutris</i>) gene transcript profiles. Marine Mammal Science, 2015, 31, 191-210.	1.8	16
47	The Use of Quantitative Models in Sea Otter Conservation. , 2015, , 257-300.		16
48	Ecological drivers of variation in tool-use frequency across sea otter populations. Behavioral Ecology, 2015, 26, 519-526.	2.2	43
49	The interaction of intraspecific competition and habitat on individual diet specialization: a near range-wide examination of sea otters. Oecologia, 2015, 178, 45-59.	2.0	77
50	Timescales alter the inferred strength and temporal consistency of intraspecific diet specialization. Oecologia, 2015, 178, 61-74.	2.0	38
51	The cost of reproduction: differential resource specialization in female and male California sea otters. Oecologia, 2015, 178, 17-29.	2.0	34
52	Testing the nutritional-limitation, predator-avoidance, and storm-avoidance hypotheses for restricted sea otter habitat use in the Aleutian Islands, Alaska. Oecologia, 2015, 177, 645-655.	2.0	9
53	Evaluating potential conservation conflicts between two listed species: sea otters and black abalone. Ecology, 2015, 96, 3102-3108.	3.2	16
54	Energetic demands of immature sea otters from birth to weaning: implications for maternal costs, reproductive behavior and population-level trends. Journal of Experimental Biology, 2014, 217, 2053-2061.	1.7	62

#	Article	IF	CITATIONS
55	Sea otters are recolonizing southern California in fits and starts. Ecosphere, 2014, 5, 1-11.	2.2	31
56	An Online Database for Informing Ecological Network Models: http://kelpforest.ucsc.edu. PLoS ONE, 2014, 9, e109356.	2.5	17
57	A multiâ€decade time series of kelp forest community structure at San Nicolas Island, California (USA). Ecology, 2013, 94, 2654-2654.	3.2	18
58	Recovery of a top predator mediates negative eutrophic effects on seagrass. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15313-15318.	7.1	146
59	Prevalence, Environmental Loading, and Molecular Characterization of Cryptosporidium and Giardia Isolates from Domestic and Wild Animals along the Central California Coast. Applied and Environmental Microbiology, 2012, 78, 8762-8772.	3.1	50
60	Gene transcription in sea otters (<i>Enhydra lutris</i>); development of a diagnostic tool for sea otter and ecosystem health. Molecular Ecology Resources, 2012, 12, 67-74.	4.8	39
61	Tools for quantifying isotopic niche space and dietary variation at the individual and population level. Journal of Mammalogy, 2012, 93, 329-341.	1.3	144
62	Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecology Letters, 2012, 15, 475-483.	6.4	146
63	Ontogenetic and Among-Individual Variation in Foraging Strategies of Northeast Pacific White Sharks Based on Stable Isotope Analysis. PLoS ONE, 2012, 7, e45068.	2.5	104
64	Predicting community responses to perturbations in the face of imperfect knowledge and network complexity. Ecology, 2011, 92, 836-846.	3.2	96
65	Sea otter mortality in fish and shellfish traps: estimating potential impacts and exploring possible solutions. Endangered Species Research, 2011, 13, 219-229.	2.4	21
66	Using Ecological Function to Develop Recovery Criteria for Depleted Species: Sea Otters and Kelp Forests in the Aleutian Archipelago. Conservation Biology, 2010, 24, 852-860.	4.7	59
67	Lesions and Behavior Associated with Forced Copulation of Juvenile Pacific Harbor Seals (<l>Phoca vitulina richardsi</l>) by Southern Sea Otters (<l>Enhydra lutris) Tj ETQq1 1 0.784314</l>	rg B7 ∣Ove	erl a øk 10 Tf
68	PERSISTENT ORGANIC POLLUTANTS IN THE BLOOD OF FREE-RANGING SEA OTTERS (ENHYDRA LUTRIS SSP.) IN ALASKA AND CALIFORNIA. Journal of Wildlife Diseases, 2010, 46, 1214-1233.	0.8	13
69	Variation in Î′ ¹³ C and δ ¹⁵ N diet–vibrissae trophic discrimination factors in a wild population of California sea otters. Ecological Applications, 2010, 20, 1744-1752.	3.8	87
70	Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters. PLoS ONE, 2010, 5, e12576.	2.5	321
71	Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2242-2247.	7.1	120

Using stable isotopes to investigate individual diet specialization in California sea otters (<i>Enhydra) Tj ETQq0 0 0 322 / Overlock 10 Tf 262 k 10 Tf

#	Article	IF	CITATIONS
73	Food limitation leads to behavioral diversification and dietary specialization in sea otters. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 560-565.	7.1	318
74	UNDERSTANDING AND PREDICTING ECOLOGICAL DYNAMICS: ARE MAJOR SURPRISES INEVITABLE. Ecology, 2008, 89, 952-961.	3.2	222
75	USING DEMOGRAPHY AND MOVEMENT BEHAVIOR TO PREDICT RANGE EXPANSION OF THE SOUTHERN SEA OTTER. Ecological Applications, 2008, 18, 1781-1794.	3.8	65
76	High mortality of loggerhead turtles due to bycatch, human consumption and strandings at Baja California Sur, Mexico, 2003 to 2007. Endangered Species Research, 2008, 5, 171-183.	2.4	74
77	Sea otters in a dirty ocean. Journal of the American Veterinary Medical Association, 2007, 231, 1648-1652.	0.5	36
78	Individual dietary specialization and dive behaviour in the California sea otter: Using archival time–depth data to detect alternative foraging strategies. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 330-342.	1.4	94
79	INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. , 2006, 16, 2293-2312.		60
80	Patterns of growth and body condition in sea otters from the Aleutian archipelago before and after the recent population decline. Journal of Animal Ecology, 2006, 75, 978-989.	2.8	42
81	INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. , 2006, 16, 2293.		1
82	CONTINUING SEA OTTER POPULATION DECLINES IN THE ALEUTIAN ARCHIPELAGO. Marine Mammal Science, 2005, 21, 169-172.	1.8	35
83	MORTALITY SENSITIVITY IN LIFE-STAGE SIMULATION ANALYSIS: A CASE STUDY OF SOUTHERN SEA OTTERS. , 2004, 14, 1554-1565.		39
84	Carrying Capacity and Pre-Decline Abundance of Sea Otters (Enhydra lutris kenyoni) in the Aleutian Islands. , 2003, 84, 145.		13
85	SEA OTTER POPULATION DECLINES IN THE ALEUTIAN ARCHIPELAGO. Journal of Mammalogy, 2003, 84, 55-64.	1.3	110
86	ATTACKS ON SEA OTTERS BY KILLER WHALES. Marine Mammal Science, 1998, 14, 888-894.	1.8	37
87	Killer Whale Predation on Sea Otters Linking Oceanic and Nearshore Ecosystems. , 1998, 282, 473-476.		967
88	The reproductive behavior and energetics of male gray seals (Halichoerus grypus) breeding on a land-fast ice substrate. Behavioral Ecology and Sociobiology, 1995, 36, 159-170.	1.4	7