Minetaro Arita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3982771/publications.pdf

Version: 2024-02-01

257450 206112 2,368 52 24 48 h-index citations g-index papers 53 53 53 2256 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Concurrent outbreaks of circulating vaccine-derived poliovirus types 1 and 2 affecting the Republic of the Philippines and Malaysia, $2019\hat{a}\in$ "2021. Vaccine, 2023, 41, A58-A69.	3.8	8
2	Ligand Recognition by the Lipid Transfer Domain of Human OSBP Is Important for Enterovirus Replication. ACS Infectious Diseases, 2022, 8, 1161-1170.	3.8	4
3	High-Order Epistasis and Functional Coupling of Infection Steps Drive Virus Evolution toward Independence from a Host Pathway. Microbiology Spectrum, 2021, 9, e0080021.	3.0	4
4	Sphingomyelin Is Essential for the Structure and Function of the Double-Membrane Vesicles in Hepatitis C Virus RNA Replication Factories. Journal of Virology, 2020, 94, .	3.4	19
5	Characterization of a New Antienterovirus D68 Compound Purified from Avocado. ACS Infectious Diseases, 2020, 6, 2291-2300.	3.8	8
6	Surfeit 4 Contributes to the Replication of Hepatitis C Virus Using Double-Membrane Vesicles. Journal of Virology, 2020, 94, .	3.4	14
7	Intestinal Antibody Responses to 2 Novel Live Attenuated Type 2 Oral Poliovirus Vaccines in Healthy Adults in Belgium. Journal of Infectious Diseases, 2020, , .	4.0	4
8	Evaluation of antigenic differences between wild and Sabin vaccine strains of poliovirus using the pseudovirus neutralization test. Scientific Reports, 2019, 9, 11970.	3.3	8
9	Intestinal antibody responses to a live oral poliovirus vaccine challenge among adults previously immunized with inactivated polio vaccine in Sweden. BMJ Global Health, 2019, 4, e001613.	4.7	13
10	Essential domains of phosphatidylinositolâ \in 4 kinase III β required for enterovirus replication. Microbiology and Immunology, 2019, 63, 285-288.	1.4	7
11	Poliovirus Evolution toward Independence from the Phosphatidylinositol-4 Kinase III \hat{l}^2/O xysterol-Binding Protein Family I Pathway. ACS Infectious Diseases, 2019, 5, 962-973.	3.8	16
12	Intestinal Immune Responses to Type 2 Oral Polio Vaccine (OPV) Challenge in Infants Previously Immunized With Bivalent OPV and Either High-Dose or Standard Inactivated Polio Vaccine. Journal of Infectious Diseases, 2018, 217, 371-380.	4.0	32
13	Intestinal Immunity to Poliovirus Following Sequential Trivalent Inactivated Polio Vaccine/Bivalent Oral Polio Vaccine and Trivalent Inactivated Polio Vaccine–only Immunization Schedules: Analysis of an Open-label, Randomized, Controlled Trial in Chilean Infants. Clinical Infectious Diseases, 2018, 67, S42-S50.	5.8	12
14	Allosteric Regulation of Phosphatidylinositol 4-Kinase III Beta by an Antipicornavirus Compound MDL-860. ACS Infectious Diseases, 2017, 3, 585-594.	3.8	18
15	Poliovirus Studies during the Endgame of the Polio Eradication Program. Japanese Journal of Infectious Diseases, 2017, 70, 1-6.	1.2	10
16	Fungus-Derived Neoechinulin B as a Novel Antagonist of Liver X Receptor, Identified by Chemical Genetics Using a Hepatitis C Virus Cell Culture System. Journal of Virology, 2016, 90, 9058-9074.	3.4	27
17	Mechanism of Poliovirus Resistance to Host Phosphatidylinositol-4 Kinase III \hat{l}^2 Inhibitor. ACS Infectious Diseases, 2016, 2, 140-148.	3.8	33
18	Prolactin Regulatory Element Binding Protein Is Involved in Hepatitis C Virus Replication by Interaction with NS4B. Journal of Virology, 2016, 90, 3093-3111.	3.4	21

#	Article	IF	CITATIONS
19	Phosphatidylinositol 4â€kinase III beta is the target of oxoglaucine and pachypodol (Ro 09â€0179) for their antiâ€poliovirus activities, and is located at upstream of the target step of brefeldin A. Microbiology and Immunology, 2015, 59, 338-347.	1.4	34
20	Itraconazole Inhibits Enterovirus Replication by Targeting the Oxysterol-Binding Protein. Cell Reports, 2015, 10, 600-615.	6.4	201
21	Development of an Efficient Entire-Capsid-Coding-Region Amplification Method for Direct Detection of Poliovirus from Stool Extracts. Journal of Clinical Microbiology, 2015, 53, 73-78.	3.9	25
22	Phosphatidylinositolâ€4 kinase III beta and oxysterolâ€binding protein accumulate unesterified cholesterol on poliovirusâ€induced membrane structure. Microbiology and Immunology, 2014, 58, 239-256.	1.4	91
23	Intestinal Immunity Is a Determinant of Clearance of Poliovirus After Oral Vaccination. Journal of Infectious Diseases, 2014, 209, 1628-1634.	4.0	40
24	Indirect immunofluorescence images of poliovirusâ€infected cells. Blue, BODIPYâ€cholesterol; Green, virus 2B protein; Red, phosphatidylinositol 4â€phosphate. Microbiology and Immunology, 2014, 58, i.	1.4	0
25	Development of Poliovirus Extraction Method from Stool Extracts by Using Magnetic Nanoparticles Sensitized with Soluble Poliovirus Receptor. Journal of Clinical Microbiology, 2013, 51, 2717-2720.	3.9	10
26	Oxysterol-Binding Protein Family I Is the Target of Minor Enviroxime-Like Compounds. Journal of Virology, 2013, 87, 4252-4260.	3.4	96
27	ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. EMBO Journal, 2012, 31, 754-766.	7.8	159
28	Valosin-Containing Protein (VCP/p97) Is Required for Poliovirus Replication and Is Involved in Cellular Protein Secretion Pathway in Poliovirus Infection. Journal of Virology, 2012, 86, 5541-5553.	3.4	63
29	Reply to "Poliovirus-Neutralization Test with Poliovirus Pseudovirus To Measure Neutralizing Antibody in Humans― Vaccine Journal, 2012, 19, 459-459.	3.1	0
30	Development of a Transcription-Reverse Transcription Concerted Reaction Method for Specific Detection of Human Enterovirus 71 from Clinical Specimens. Journal of Clinical Microbiology, 2012, 50, 1764-1768.	3.9	6
31	Biochemical characterization of enterovirus 71 3D RNA polymerase. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 211-219.	1.9	24
32	Particle Agglutination Method for Poliovirus Identification. Journal of Visualized Experiments, 2011, , .	0.3	0
33	Phosphatidylinositol 4-Kinase III Beta Is a Target of Enviroxime-Like Compounds for Antipoliovirus Activity. Journal of Virology, 2011, 85, 2364-2372.	3.4	133
34	Development of a Poliovirus Neutralization Test with Poliovirus Pseudovirus for Measurement of Neutralizing Antibody Titer in Human Serum. Vaccine Journal, 2011, 18, 1889-1894.	3.1	26
35	Development of a Particle Agglutination Method with Soluble Virus Receptor for Identification of Poliovirus. Journal of Clinical Microbiology, 2010, 48, 2698-2702.	3.9	5
36	A bifunctional anti-enterovirus compound that inhibits replication and the early stage of enterovirus 71 infection. Journal of General Virology, 2010, 91, 2734-2744.	2.9	41

3

#	Article	IF	CITATIONS
37	Development of a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) system for a highly sensitive detection of enterovirus in the stool samples of acute flaccid paralysis cases. BMC Infectious Diseases, 2009, 9, 208.	2.9	24
38	Cellular kinase inhibitors that suppress enterovirus replication have a conserved target in viral protein 3A similar to that of enviroxime. Journal of General Virology, 2009, 90, 1869-1879.	2.9	45
39	Characterization of pharmacologically active compounds that inhibit poliovirus and enterovirus 71 infectivity. Journal of General Virology, 2008, 89, 2518-2530.	2.9	87
40	Cooperative Effect of the Attenuation Determinants Derived from Poliovirus Sabin 1 Strain Is Essential for Attenuation of Enterovirus 71 in the NOD/SCID Mouse Infection Model. Journal of Virology, 2008, 82, 1787-1797.	3.4	97
41	An Attenuated Strain of Enterovirus 71 Belonging to Genotype A Showed a Broad Spectrum of Antigenicity with Attenuated Neurovirulence in Cynomolgus Monkeys. Journal of Virology, 2007, 81, 9386-9395.	3.4	120
42	Rapid Genome Sequencing of RNA Viruses. Emerging Infectious Diseases, 2007, 13, 322-324.	4.3	41
43	Quantitative analysis of poliomyelitis-like paralysis in mice induced by a poliovirus replicon. Journal of General Virology, 2006, 87, 3317-3327.	2.9	39
44	Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. Journal of General Virology, 2005, 86, 1391-1401.	2.9	146
45	A Sabin 3-Derived Poliovirus Recombinant Contained a Sequence Homologous with Indigenous Human Enterovirus Species C in the Viral Polymerase Coding Region. Journal of Virology, 2005, 79, 12650-12657.	3.4	88
46	Characterization of in vitro and in vivo phenotypes of poliovirus type 1 mutants with reduced viral protein synthesis activity. Journal of General Virology, 2004, 85, 1933-1944.	2.9	10
47	Circulation of Type 1 Vaccine-Derived Poliovirus in the Philippines in 2001. Journal of Virology, 2004, 78, 13512-13521.	3.4	128
48	Characterization of the Poliovirus 147S Particle: New Insights into Poliovirus Uncoating. Virology, 2003, 305, 55-65.	2.4	6
49	Regulation of the Yeast Yap1p Nuclear Export Signal Is Mediated by Redox Signal-Induced Reversible Disulfide Bond Formation. Molecular and Cellular Biology, 2001, 21, 6139-6150.	2.3	217
50	Multiple pathways for establishment of poliovirus infection. Virus Research, 1999, 62, 97-105.	2.2	9
51	Interaction of Poliovirus with Its Receptor Affords a High Level of Infectivity to the Virion in Poliovirus Infections Mediated by the Fc Receptor. Journal of Virology, 1999, 73, 1066-1074.	3.4	28
52	Interaction of Poliovirus with Its Purified Receptor and Conformational Alteration in the Virion. Journal of Virology, 1998, 72, 3578-3586.	3.4	69