
Willem van Schaik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/398270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alcaligenes faecalis metallo-Î ² -lactamase in extensively drug-resistant Pseudomonas aeruginosa isolates. Clinical Microbiology and Infection, 2022, 28, 880.e1-880.e8.	2.8	18
2	Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nature Communications, 2022, 13, 893.	5.8	95
3	Phenotypic and Genotypic Characterization of a Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae ST17-KL38 Clinical Isolate Harboring the Carbapenemase IMP-4. Microbiology Spectrum, 2022, 10, e0213421.	1.2	15
4	<i>Enterobacteriaceae</i> and <i>Bacteroidaceae</i> provide resistance to travel-associated intestinal colonization by multi-drug resistant <i>Escherichia coli</i> . Gut Microbes, 2022, 14, 2060676.	4.3	11
5	Baas Becking meets One Health. Nature Microbiology, 2022, 7, 482-483.	5.9	3
6	Antibiotic resistance in the commensal human gut microbiota. Current Opinion in Microbiology, 2022, 68, 102150.	2.3	32
7	GR13-type plasmids in Acinetobacter potentiate the accumulation and horizontal transfer of diverse accessory genes. Microbial Genomics, 2022, 8, .	1.0	8
8	Acquisition of a genomic resistance island (AbGRI5) from global clone 2 through homologous recombination in a clinical <i>Acinetobacter baumannii</i> isolate. Journal of Antimicrobial Chemotherapy, 2021, 76, 65-69.	1.3	13
9	Transferable <i>Acinetobacter baumannii</i> plasmid pDETAB2 encodes OXA-58 and NDM-1 and represents a new class of antibiotic resistance plasmids. Journal of Antimicrobial Chemotherapy, 2021, 76, 1130-1134.	1.3	27
10	Harder, better, faster, stronger: Colistin resistance mechanisms in Escherichia coli. PLoS Genetics, 2021, 17, e1009262.	1.5	13
11	Emergence of carbapenem-resistant Klebsiella pneumoniae harbouring bla OXA-48-like genes in China. Journal of Medical Microbiology, 2021, 70, .	0.7	13
12	Metagenome-Wide Analysis of Rural and Urban Surface Waters and Sediments in Bangladesh Identifies Human Waste as a Driver of Antibiotic Resistance. MSystems, 2021, 6, e0013721.	1.7	12
13	Functional characterization of a gene cluster responsible for inositol catabolism associated with hospital-adapted isolates of Enterococcus faecium. Microbiology (United Kingdom), 2021, 167, .	0.7	0
14	Spread of Carbapenem-Resistant Klebsiella pneumoniae in an Intensive Care Unit: A Whole-Genome Sequence-Based Prospective Observational Study. Microbiology Spectrum, 2021, 9, e0005821.	1.2	12
15	Temperature-Regulated IncX3 Plasmid Characteristics and the Role of Plasmid-Encoded H-NS in Thermoregulation. Frontiers in Microbiology, 2021, 12, 765492.	1.5	8
16	Topical or oral antibiotics for children with acute otitis media presenting with ear discharge: study protocol of a randomised controlled non-inferiority trial. BMJ Open, 2021, 11, e052128.	0.8	1
17	Tandem amplification of the vanM gene cluster drives vancomycin resistance in vancomycin-variable enterococci. Journal of Antimicrobial Chemotherapy, 2020, 75, 283-291.	1.3	16
18	Increased risk of acquisition and transmission of ESBL-producing Enterobacteriaceae in malnourished children exposed to amoxicillin. Journal of Antimicrobial Chemotherapy, 2020, 75, 709-717.	1.3	16

#	Article	IF	CITATIONS
19	Microevolution of acquired colistin resistance in Enterobacteriaceae from ICU patients receiving selective decontamination of the digestive tract. Journal of Antimicrobial Chemotherapy, 2020, 75, 3135-3143.	1.3	18
20	Evolution of Colistin Resistance in the Klebsiella pneumoniae Complex Follows Multiple Evolutionary Trajectories with Variable Effects on Fitness and Virulence Characteristics. Antimicrobial Agents and Chemotherapy, 2020, 65, .	1.4	12
21	Conditionally essential genes for survival during starvation in Enterococcus faecium E745. BMC Genomics, 2020, 21, 568.	1.2	12
22	Plasmids Shaped the Recent Emergence of the Major Nosocomial Pathogen Enterococcus faecium. MBio, 2020, 11, .	1.8	91
23	Nonclonal Emergence of Colistin Resistance Associated with Mutations in the BasRS Two-Component System in Escherichia coli Bloodstream Isolates. MSphere, 2020, 5, .	1.3	19
24	Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Current Opinion in Microbiology, 2020, 53, 35-43.	2.3	191
25	A Pilot Integrative Analysis of Colonic Gene Expression, Gut Microbiota, and Immune Infiltration in Primary Sclerosing Cholangitis-Inflammatory Bowel Disease: Association of Disease With Bile Acid Pathways. Journal of Crohn's and Colitis, 2020, 14, 935-947.	0.6	81
26	Cointegration as a mechanism for the evolution of a KPC-producing multidrug resistance plasmid in <i>Proteus mirabilis</i> . Emerging Microbes and Infections, 2020, 9, 1206-1218.	3.0	30
27	Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	272
28	Do we really understand how faecal microbiota transplantation works?. EBioMedicine, 2019, 42, 39.	2.7	1
29	CRISPR-Cas9-mediated genome editing in vancomycin-resistant <i>Enterococcus faecium</i> . FEMS Microbiology Letters, 2019, 366, .	0.7	22
30	Prediction of the intestinal resistome by a three-dimensional structure-based method. Nature Microbiology, 2019, 4, 112-123.	5.9	129
31	Enterococcus faecium genome dynamics during long-term asymptomatic patient gut colonization. Microbial Genomics, 2019, 5, .	1.0	18
32	Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microbial Genomics, 2019, 5, .	1.0	59
33	OWE-014â€Whole transcriptome shotgun sequencing reveals significant upregulation of colonic mucosal immune-mediated anti-microbial mechanisms in psc-uc. , 2018, , .		0
34	Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system. FEMS Microbiology Ecology, 2018, 94, .	1.3	72
35	Rapid resistome mapping using nanopore sequencing. Nucleic Acids Research, 2017, 45, gkw1328.	6.5	62
36	Challenges and opportunities for wholeâ€genome sequencing–based surveillance of antibiotic resistance. Annals of the New York Academy of Sciences, 2017, 1388, 108-120.	1.8	87

#	Article	IF	CITATIONS
37	The Two-Component System ChtRS Contributes to Chlorhexidine Tolerance in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	33
38	Whole-Genome Sequencing of Bacterial Pathogens: the Future of Nosocomial Outbreak Analysis. Clinical Microbiology Reviews, 2017, 30, 1015-1063.	5.7	310
39	Characterization of Enterococcus Isolates Colonizing the Intestinal Tract of Intensive Care Unit Patients Receiving Selective Digestive Decontamination. Frontiers in Microbiology, 2017, 8, 1596.	1.5	18
40	Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects. Microbiome, 2017, 5, 88.	4.9	90
41	RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum. BMC Genomics, 2017, 18, 893.	1.2	57
42	On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microbial Genomics, 2017, 3, e000128.	1.0	198
43	Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones?. Frontiers in Microbiology, 2016, 7, 788.	1.5	248
44	Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology, 2016, 221, 1102-1109.	0.8	87
45	The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets. Scientific Reports, 2016, 5, 18255.	1.6	12
46	Genomic Characterization of Colistin Heteroresistance in Klebsiella pneumoniae during a Nosocomial Outbreak. Antimicrobial Agents and Chemotherapy, 2016, 60, 6837-6843.	1.4	80
47	Genome-wide Screening Identifies Phosphotransferase System Permease BepA to Be Involved in <i>Enterococcus faecium</i> Endocarditis and Biofilm Formation. Journal of Infectious Diseases, 2016, 214, 189-195.	1.9	36
48	The impact of host metapopulation structure on the population genetics of colonizing bacteria. Journal of Theoretical Biology, 2016, 396, 53-62.	0.8	13
49	Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions. Scientific Reports, 2015, 5, 11981.	1.6	50
50	The human gut resistome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140087.	1.8	275
51	Core Genome Multilocus Sequence Typing Scheme for High-Resolution Typing of Enterococcus faecium. Journal of Clinical Microbiology, 2015, 53, 3788-3797.	1.8	240
52	Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics, 2015, 16, 282.	1.2	82
53	Deletions in a ribosomal protein-coding gene are associated with tigecycline resistance in Enterococcus faecium. International Journal of Antimicrobial Agents, 2015, 46, 572-575.	1.1	32
54	Loss of Antibiotic Tolerance in Sod-Deficient Mutants Is Dependent on the Energy Source and Arginine Catabolism in Enterococci. Journal of Bacteriology, 2015, 197, 3283-3293.	1.0	16

#	Article	IF	CITATIONS
55	Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages. PLoS Genetics, 2014, 10, e1004776.	1.5	276
56	Effects of selective digestive decontamination (SDD) on the gut resistome. Journal of Antimicrobial Chemotherapy, 2014, 69, 2215-2223.	1.3	90
57	Functional genomic analysis of bile salt resistance in Enterococcus faecium. BMC Genomics, 2013, 14, 299.	1.2	29
58	Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Current Opinion in Microbiology, 2013, 16, 10-16.	2.3	220
59	The cell wall architecture of <i>Enterococcus faecium</i> : from resistance to pathogenesis. Future Microbiology, 2013, 8, 993-1010.	1.0	33
60	Antibiotic resistant enterococci—Tales of a drug resistance gene trafficker. International Journal of Medical Microbiology, 2013, 303, 360-379.	1.5	139
61	Identification of a Genetic Determinant in Clinical Enterococcus faecium Strains That Contributes to Intestinal Colonization During Antibiotic Treatment. Journal of Infectious Diseases, 2013, 207, 1780-1786.	1.9	79
62	Recent Recombination Events in the Core Genome Are Associated with Adaptive Evolution in Enterococcus faecium. Genome Biology and Evolution, 2013, 5, 1524-1535.	1.1	87
63	Emergence of Epidemic Multidrug-Resistant Enterococcus faecium from Animal and Commensal Strains. MBio, 2013, 4, .	1.8	336
64	Identification of CodY Targets in Bacillus anthracis by Genome-Wide In Vitro Binding Analysis. Journal of Bacteriology, 2013, 195, 1204-1213.	1.0	33
65	The Enterococcus faecium Enterococcal Biofilm Regulator, EbrB, Regulates the esp Operon and Is Implicated in Biofilm Formation and Intestinal Colonization. PLoS ONE, 2013, 8, e65224.	1.1	45
66	A Lacl-Family Regulator Activates Maltodextrin Metabolism of Enterococcus faecium. PLoS ONE, 2013, 8, e72285.	1.1	8
67	Genome-Wide Identification of Ampicillin Resistance Determinants in Enterococcus faecium. PLoS Genetics, 2012, 8, e1002804.	1.5	83
68	Restricted Gene Flow among Hospital Subpopulations of Enterococcus faecium. MBio, 2012, 3, e00151-12.	1.8	177
69	Hospital and Community Ampicillin-Resistant Enterococcus faecium Are Evolutionarily Closely Linked but Have Diversified through Niche Adaptation. PLoS ONE, 2012, 7, e30319.	1.1	45
70	A multiresistance megaplasmid pLG1 bearing a hylEfm genomic island in hospital Enterococcus faecium isolates. International Journal of Medical Microbiology, 2011, 301, 165-175.	1.5	66
71	A genetic element present on megaplasmids allows <i>Enterococcus faecium</i> to use raffinose as carbon source. Environmental Microbiology, 2011, 13, 518-528.	1.8	48
72	The Recombinase IntA Is Required for Excision of esp -Containing ICE Efm1 in Enterococcus faecium. Journal of Bacteriology, 2011, 193, 1003-1006.	1.0	22

#	Article	IF	CITATIONS
73	CodY regulation is required for full virulence and heme iron acquisition in <i>Bacillus anthracis</i> . FASEB Journal, 2011, 25, 4445-4456.	0.2	39
74	Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics, 2010, 11, 239.	1.2	190
75	Comparative analysis of transcriptional and physiological responses of Bacillus cereus to organic and inorganic acid shocks. International Journal of Food Microbiology, 2010, 137, 13-21.	2.1	45
76	Genome-based insights into the evolution of enterococci. Clinical Microbiology and Infection, 2010, 16, 527-532.	2.8	72
77	A novel hybrid kinase is essential for regulating the Ïf ^B â€mediated stress response of <i>Bacillus cereus</i> . Environmental Microbiology, 2010, 12, 730-745.	1.8	30
78	Differential PilA pilus assembly by a hospital-acquired and a community-derived Enterococcus faecium isolate. Microbiology (United Kingdom), 2010, 156, 2649-2659.	0.7	17
79	Genome-based insights into the evolution of enterococci Clinical Microbiology and Infection, 2010, ,	2.8	1
80	The Global Regulator CodY Regulates Toxin Gene Expression in <i>Bacillus anthracis</i> and Is Required for Full Virulence. Infection and Immunity, 2009, 77, 4437-4445.	1.0	81
81	LPxTG surface proteins of enterococci. Trends in Microbiology, 2009, 17, 423-430.	3.5	106
82	Transition of <i>Enterococcus faecium</i> from commensal organism to nosocomial pathogen. Future Microbiology, 2009, 4, 1125-1135.	1.0	151
83	Identification of a Novel Genomic Island Specific to Hospital-Acquired Clonal Complex 17 <i>Enterococcus faecium</i> Isolates. Applied and Environmental Microbiology, 2008, 74, 7094-7097.	1.4	41
84	Identification of the Ïf B Regulon of Bacillus cereus and Conservation of Ïf B -Regulated Genes in Low-GC-Content Gram-Positive Bacteria. Journal of Bacteriology, 2007, 189, 4384-4390.	1.0	53
85	The role of σB in the stress response of Gram-positive bacteria – targets for food preservation and safety. Current Opinion in Biotechnology, 2005, 16, 218-224.	3.3	161
86	Deletion ofsigBinBacillus cereusaffects spore properties. FEMS Microbiology Letters, 2005, 252, 169-173.	0.7	11
87	Deletion of the sigB Gene in Bacillus cereus ATCC 14579 Leads to Hydrogen Peroxide Hyperresistance. Applied and Environmental Microbiology, 2005, 71, 6427-6430.	1.4	18
88	Analysis of the Role of RsbV, RsbW, and RsbY in Regulating Ï f B Activity in Bacillus cereus. Journal of Bacteriology, 2005, 187, 5846-5851.	1.0	43
89	The Alternative Sigma Factor Ï f B of Bacillus cereus : Response to Stress and Role in Heat Adaptation. Journal of Bacteriology, 2004, 186, 316-325.	1.0	72
90	Identification of σB-Dependent Genes in Bacillus cereus by Proteome and In Vitro Transcription Analysis. Journal of Bacteriology, 2004, 186, 4100-4109.	1.0	26

#	Article	IF	CITATIONS
91	Impact of genomics on microbial food safety. Trends in Biotechnology, 2004, 22, 653-660.	4.9	40
92	Progress in Food-related Research Focussing on Bacillus cereus. Microbes and Environments, 2004, 19, 265-269.	0.7	5
93	Identification of Proteins Involved in the Heat Stress Response of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 2002, 68, 3486-3495.	1.4	117
94	Acid-Adapted Listeria monocytogenes Displays Enhanced Tolerance against the Lantibiotics Nisin and Lacticin 3147. Journal of Food Protection, 1999, 62, 536-540.	0.8	122