Samuel David

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3982638/publications.pdf Version: 2024-02-01

SAMILEL DAVID

#	Article	IF	CITATIONS
1	Ferroptosis in Neurological Disease. Neuroscientist, 2023, 29, 591-615.	3.5	6
2	Dysregulation of Iron Homeostasis in the Central Nervous System and the Role of Ferroptosis in Neurodegenerative Disorders. Antioxidants and Redox Signaling, 2022, 37, 150-170.	5.4	47
3	Ferroptosis: copper-iron connection in cuprizone-induced demyelination. Neural Regeneration Research, 2022, 17, 89.	3.0	10
4	Schwann Cells Provide Iron to Axonal Mitochondria and Its Role in Nerve Regeneration. Journal of Neuroscience, 2021, 41, 7300-7313.	3.6	23
5	Bioactive Lipid Mediators in the Initiation and Resolution of Inflammation after Spinal Cord Injury. Neuroscience, 2021, 466, 273-297.	2.3	24
6	Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Experimental Neurology, 2021, 341, 113704.	4.1	42
7	Ferroptosis Mediates Cuprizone-Induced Loss of Oligodendrocytes and Demyelination. Journal of Neuroscience, 2020, 40, 9327-9341.	3.6	95
8	Benefits of physical exercise on cognition and glial white matter pathology in a mouse model of vascular cognitive impairment and dementia. Glia, 2020, 68, 1925-1940.	4.9	18
9	Synthetic mycobacterial molecular patterns partially complete Freund's adjuvant. Scientific Reports, 2020, 10, 5874.	3.3	25
10	Bioactive Lipids in Inflammation After Central Nervous System Injury. Advances in Experimental Medicine and Biology, 2019, 1127, 181-194.	1.6	11
11	Microglia and macrophages differ in their inflammatory profile after permanent brain ischemia. Experimental Neurology, 2018, 301, 120-132.	4.1	101
12	Ceruloplasmin replacement therapy ameliorates neurological symptoms in a preclinical model ofÂaceruloplasminemia. EMBO Molecular Medicine, 2018, 10, 91-106.	6.9	48
13	Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLoS Biology, 2018, 16, e2005264.	5.6	159
14	The ferroxidase ceruloplasmin influences Reelin processing, cofilin phosphorylation and neuronal organization in the developing brain. Molecular and Cellular Neurosciences, 2018, 92, 104-113.	2.2	2
15	Myeloid cell responses after spinal cord injury. Journal of Neuroimmunology, 2018, 321, 97-108.	2.3	63
16	Ceruloplasmin Plays a Neuroprotective Role in Cerebral Ischemia. Frontiers in Neuroscience, 2018, 12, 988.	2.8	29
17	Small-Molecule Stabilization of 14-3-3 Protein-Protein Interactions Stimulates Axon Regeneration. Neuron, 2017, 93, 1082-1093.e5.	8.1	66
18	Maresin 1 Promotes Inflammatory Resolution, Neuroprotection, and Functional Neurological Recovery After Spinal Cord Injury. Journal of Neuroscience, 2017, 37, 11731-11743.	3.6	130

SAMUEL DAVID

#	Article	IF	CITATIONS
19	Novel Influences of IL-10 on CNS Inflammation Revealed by Integrated Analyses of Cytokine Networks and Microglial Morphology. Frontiers in Cellular Neuroscience, 2017, 11, 233.	3.7	19
20	Arginase-1 is expressed exclusively by infiltrating myeloid cells in CNS injury and disease. Brain, Behavior, and Immunity, 2016, 56, 61-67.	4.1	53
21	Role of IL-10 in Resolution of Inflammation and Functional Recovery after Peripheral Nerve Injury. Journal of Neuroscience, 2015, 35, 16431-16442.	3.6	108
22	Peripheral Nerve Injury Induces Persistent Vascular Dysfunction and Endoneurial Hypoxia, Contributing to the Genesis of Neuropathic Pain. Journal of Neuroscience, 2015, 35, 3346-3359.	3.6	101
23	Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation. Neurobiology of Disease, 2015, 81, 93-107.	4.4	62
24	Large animal and primate models of spinal cord injury for the testing of novel therapies. Experimental Neurology, 2015, 269, 154-168.	4.1	75
25	Hephaestin and Ceruloplasmin Play Distinct but Interrelated Roles in Iron Homeostasis in Mouse Brain. Journal of Nutrition, 2015, 145, 1003-1009.	2.9	56
26	Computational modeling of cytokine signaling in microglia. Molecular BioSystems, 2015, 11, 3332-3346.	2.9	20
27	TNF and Increased Intracellular Iron Alter Macrophage Polarization to a Detrimental M1 Phenotype in the Injured Spinal Cord. Neuron, 2014, 83, 1098-1116.	8.1	504
28	Inflammatory Pathways in Spinal Cord Injury. International Review of Neurobiology, 2012, 106, 127-152.	2.0	84
29	Iron Efflux from Astrocytes Plays a Role in Remyelination. Journal of Neuroscience, 2012, 32, 4841-4847.	3.6	74
30	Iron homeostasis in astrocytes and microglia is differentially regulated by TNFâ€î± and TGFâ€î21. Glia, 2012, 60, 738-750.	4.9	98
31	Role of phospholipase A2s and lipid mediators in secondary damage after spinal cord injury. Cell and Tissue Research, 2012, 349, 249-267.	2.9	27
32	Iron Efflux from Oligodendrocytes Is Differentially Regulated in Gray and White Matter. Journal of Neuroscience, 2011, 31, 13301-13311.	3.6	87
33	Differential expression of SOCS1 in macrophages in relapsingâ€remitting and chronic EAE and its role in disease severity. Clia, 2010, 58, 1816-1826.	4.9	45
34	Dysregulation of Iron Homeostasis in the CNS Contributes to Disease Progression in a Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2009, 29, 610-619.	3.6	147
35	Novel roles for Nogo receptor in inflammation and disease. Trends in Neurosciences, 2008, 31, 221-226.	8.6	57
36	Ceruloplasmin Protects Injured Spinal Cord from Iron-Mediated Oxidative Damage. Journal of Neuroscience, 2008, 28, 12736-12747.	3.6	76

SAMUEL DAVID

#	Article	IF	CITATIONS
37	Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO Journal, 2007, 26, 2823-2831.	7.8	310
38	Age-Related Changes in Iron Homeostasis and Cell Death in the Cerebellum of Ceruloplasmin-Deficient Mice. Journal of Neuroscience, 2006, 26, 9810-9819.	3.6	125
39	MOLECULARAPPROACHES TOSPINALCORDREPAIR. Annual Review of Neuroscience, 2003, 26, 411-440.	10.7	184
40	Glycosylphosphatidylinositol-anchored Ceruloplasmin Is Required for Iron Efflux from Cells in the Central Nervous System. Journal of Biological Chemistry, 2003, 278, 27144-27148.	3.4	316
41	Chapter 30 Recruiting the immune response to promote long distance axon regeneration after spinal cord injury. Progress in Brain Research, 2002, 137, 407-414.	1.4	7
42	Ceruloplasmin Regulates Iron Levels in the CNS and Prevents Free Radical Injury. Journal of Neuroscience, 2002, 22, 6578-6586.	3.6	316
43	Alternative RNA Splicing Generates a Glycosylphosphatidylinositol-anchored Form of Ceruloplasmin in Mammalian Brain. Journal of Biological Chemistry, 2000, 275, 4305-4310.	3.4	179
44	A Novel Glycosylphosphatidylinositol-anchored Form of Ceruloplasmin Is Expressed by Mammalian Astrocytes. Journal of Biological Chemistry, 1997, 272, 20185-20190.	3.4	288
45	Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse. Journal of Neuroscience Research, 1996, 46, 404-414.	2.9	183
46	Myelinâ€associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse. Journal of Neuroscience Research, 1996, 46, 404-414.	2.9	3