
M Reza Hashemi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3981702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of fragility functions for rigid-frame bridges subjected to tsunami-induced hydrodynamic forces. Structure and Infrastructure Engineering, 2022, 18, 1282-1299.	2.0	2
2	Sea level rise changes estuarine tidal stream energy. Energy, 2022, 239, 122428.	4.5	12
3	Modeling the impact of sea level rise on maximum water elevation during storm surge events: a closer look at coastal embayments. Climatic Change, 2022, 171, 1.	1.7	1
4	Assessment of hurricane generated loads on offshore wind farms; a closer look at most extreme historical hurricanes in New England. Renewable Energy, 2021, 175, 593-609.	4.3	6
5	Simulation of Hurricane Loading for Proposed Offshore Windfarms off the US Northeast Coast. Journal of Physics: Conference Series, 2020, 1452, 012026.	0.3	0
6	Flood risk in past and future: A case study for the Pawtuxet River's recordâ€breaking March 2010 flood event. Journal of Flood Risk Management, 2020, 13, e12655.	1.6	4
7	The impacts of tidal energy development and sea-level rise in the Gulf of Maine. Energy, 2019, 187, 115942.	4.5	20
8	Using Case Studies of Bridge Scour in Rhode Island to Evaluate Simplified Scour Equations. , 2019, , .		0
9	Role of Hurricane Wind Models in Accurate Simulation of Storm Surge and Waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 2019, 145, .	0.5	32
10	Incorporating a machine learning technique to improve open-channel flow computations. Neural Computing and Applications, 2019, 31, 909-921.	3.2	3
11	Tidal stream resource characterisation in progressive versus standing wave systems. Applied Energy, 2018, 220, 274-285.	5.1	24
12	Assessing the impact of extreme storms on barrier beaches along the Atlantic coastline: Application to the southern Rhode Island coast. Coastal Engineering, 2018, 133, 26-42.	1.7	26
13	Application of RBF-DQ Method to Time-Dependent Analysis of Unsaturated Seepage. Transport in Porous Media, 2018, 125, 543-564.	1.2	12
14	Wave Energy. , 2018, , 107-140.		6
15	In Situ and Remote Methods for Resource Characterization. , 2018, , 157-191.		5
16	Ocean Modelling for Resource Characterization. , 2018, , 193-235.		36
17	Other Aspects of Ocean Renewable Energy. , 2018, , 271-309.		13

2

M Reza Hashemi

#	Article	IF	CITATIONS
19	Characterizing the Great Lakes hydrokinetic renewable energy resource: Lake Erie wave, surge and seiche characteristics. Energy, 2017, 128, 661-675.	4.5	11
20	Tidal stream resource assessment uncertainty due to flow asymmetry and turbine yaw misalignment. Renewable Energy, 2017, 114, 1363-1375.	4.3	31
21	Characteristics of the velocity profile at tidal-stream energy sites. Renewable Energy, 2017, 114, 258-272.	4.3	91
22	Process-Based and Data-Based Storm Surge Models for Rhode Island Coastal Flooding within the STORMTOOLS Framework. , 2017, , .		0
23	Wave-Tide Interactions in Ocean Renewable Energy. , 2017, , 137-158.		2
24	Effect of Coastal Erosion on Storm Surge: A Case Study in the Southern Coast of Rhode Island. Journal of Marine Science and Engineering, 2016, 4, 85.	1.2	5
25	An efficient artificial intelligence model for prediction of tropical storm surge. Natural Hazards, 2016, 82, 471-491.	1.6	74
26	A simplified method to estimate tidal current effects on the ocean wave power resource. Renewable Energy, 2016, 96, 257-269.	4.3	18
27	Tidal energy leasing and tidal phasing. Renewable Energy, 2016, 85, 580-587.	4.3	64
28	Resource assessment for future generations of tidal-stream energy arrays. Energy, 2015, 83, 403-415.	4.5	189
29	Some numerical aspects of modelling flow around hydraulic structures using incompressible SPH. Computers and Mathematics With Applications, 2015, 69, 1470-1483.	1.4	11
30	A coupled tide-wave model for the NW European shelf seas. Geophysical and Astrophysical Fluid Dynamics, 2015, 109, 234-253.	0.4	27
31	Effect of waves on the tidal energy resource at a planned tidal streamÂarray. Renewable Energy, 2015, 75, 626-639.	4.3	66
32	Realistic wave conditions and their influence on quantifying the tidal stream energy resource. Applied Energy, 2014, 136, 495-508.	5.1	88
33	The role of tides in shelf-scale simulations of the wave energy resource. Renewable Energy, 2014, 69, 300-310.	4.3	34
34	Inter-annual and inter-seasonal variability of the Orkney wave power resource. Applied Energy, 2014, 132, 339-348.	5.1	63
35	Optimal phasing of the European tidal stream resource using the greedy algorithm with penalty function. Energy, 2014, 73, 997-1006.	4.5	42
36	The role of tidal asymmetry in characterizing the tidal energy resource of Orkney. Renewable Energy, 2014, 68, 337-350.	4.3	113

M Reza Hashemi

#	Article	IF	CITATIONS
37	Wave power variability over the northwest European shelf seas. Applied Energy, 2013, 106, 31-46.	5.1	121
38	Investigating the Optimum Pattern of Levee System Fuse Plugs by a Two-Dimensional Model. , 2012, , .		0
39	A localized differential quadrature model for moving boundary shallow water flows. Journal of Hydraulic Research/De Recherches Hydrauliques, 2012, 50, 612-622.	0.7	3
40	Numerical modelling of the mild slope equation using localised differential quadrature method. Ocean Engineering, 2012, 47, 88-103.	1.9	22
41	Unsteady seepage analysis using local radial basis function-based differential quadrature method. Applied Mathematical Modelling, 2011, 35, 4934-4950.	2.2	35
42	Using an artificial neural network to model seasonal changes in beach profiles. Ocean Engineering, 2010, 37, 1345-1356.	1.9	55
43	Modeling of Flood Wave Propagation through Levee Breach Using MIKE21, A Case Study in Helleh River, Iran. , 2010, , .		7
44	Tidal and surge modelling using differential quadrature: A case study in the Bristol Channel. Coastal Engineering, 2008, 55, 811-819.	1.7	21
45	A model of inter-annual variability in beach levels. Continental Shelf Research, 2008, 28, 1769-1781.	0.9	20
46	An enhanced depth-averaged tidal model for morphological studies in the presence of rotary currents. Continental Shelf Research, 2007, 27, 82-102.	0.9	21
47	A differential quadrature analysis of unsteady open channel flow. Applied Mathematical Modelling, 2007, 31, 1594-1608.	2.2	47
48	Numerical modeling of long waves in shallow water using Incremental Differential Quadrature Method. Ocean Engineering, 2006, 33, 1749-1764.	1.9	26