Xiaodong Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3981591/xiaodong-chen-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34,066 96 412 173 h-index g-index citations papers 7.68 39,437 15 449 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
412	A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics <i>Advanced Materials</i> , 2022 , e2101339	24	2
411	Hygroscopic chemistry enables fire-tolerant supercapacitors with a self-healable "solute-in-air" electrolyte <i>Advanced Materials</i> , 2022 , e2109857	24	2
410	Nano and Plants. <i>ACS Nano</i> , 2022 , 16, 1681-1684	16.7	14
409	Enabling the High-Voltage Operation of Layered Ternary Oxide Cathodes via Thermally Tailored Interphase <i>Small Methods</i> , 2022 , e2100920	12.8	2
408	Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction. <i>Informa</i> Materilly, 2022 , 4,	23.1	6
407	Sliding Cyclodextrin Molecules along Polymer Chains to Enhance the Stretchability of Conductive Composites <i>Small</i> , 2022 , e2200533	11	3
406	Enabling the High-Voltage Operation of Layered Ternary Oxide Cathodes via Thermally Tailored Interphase (Small Methods 4/2022). <i>Small Methods</i> , 2022 , 6, 2270026	12.8	O
405	High-frequency and intrinsically stretchable polymer diodes. <i>Nature</i> , 2021 , 600, 246-252	50.4	34
404	Mechanically Durable Memristor Arrays Based on a Discrete Structure Design. <i>Advanced Materials</i> , 2021 , e2106212	24	5
403	A Bioinspired Adhesive-Integrated-Agent Strategy for Constructing Robust Gas-Sensing Arrays. <i>Advanced Materials</i> , 2021 , e2106067	24	2
402	Strain-Enabled Phase Transition of Periodic Metasurfaces. <i>Advanced Materials</i> , 2021 , e2102560	24	3
401	Metal-Ion Oligomerization Inside Electrified Carbon Micropores and its Effect on Capacitive Charge Storage. <i>Advanced Materials</i> , 2021 , e2107439	24	5
400	Structural Regulation of Myocytes in Engineered Healthy and Diseased Cardiac Models <i>ACS Applied Bio Materials</i> , 2021 , 4, 267-276	4.1	
399	Fusing Stretchable Sensing Technology with Machine Learning for Human Machine Interfaces. <i>Advanced Functional Materials</i> , 2021 , 31, 2008807	15.6	26
398	A Morphable Ionic Electrode Based on Thermogel for Non-Invasive Hairy Plant Electrophysiology. <i>Advanced Materials</i> , 2021 , 33, e2007848	24	17
397	Spatiotemporal Oscillation in Confined Epithelial Motion upon Fluid-to-Solid Transition. <i>ACS Nano</i> , 2021 , 15, 7618-7627	16.7	2
396	Decimal Solvent-Based High-Entropy Electrolyte Enabling the Extended Survival Temperature of Lithium-Ion Batteries to 1301°C. CCS Chemistry, 2021, 3, 1245-1255	7.2	15

(2020-2021)

395	Artificial Visual Electronics for Closed-Loop Sensation/Action Systems. <i>Advanced Intelligent Systems</i> , 2021 , 3, 2100071	6	1
394	Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. <i>Chemical Engineering Journal</i> , 2021 , 414, 128781	14.7	58
393	Machine Learning-Reinforced Noninvasive Biosensors for Healthcare. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100734	10.1	7
392	Highly Thermal-Wet Comfortable and Conformal Silk-Based Electrodes for On-Skin Sensors with Sweat Tolerance. <i>ACS Nano</i> , 2021 , 15, 9955-9966	16.7	21
391	A Stretchable and Transparent Electrode Based on PEGylated Silk Fibroin for In Vivo Dual-Modal Neural-Vascular Activity Probing. <i>Advanced Materials</i> , 2021 , 33, e2100221	24	8
390	Synthesis and Dewatering Properties of Cellulose Derivative-Grafting DMC Amphoteric Biodegradable Flocculants. <i>Journal of Polymers and the Environment</i> , 2021 , 29, 565-575	4.5	2
389	Porous evaporators with special wettability for low-grade heat-driven water desalination. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 702-726	13	25
388	Artificial Skin Perception. <i>Advanced Materials</i> , 2021 , 33, e2003014	24	78
387	Carbon dots@metalBrganic frameworks as dual-functional fluorescent sensors for Fe3+ ions and nitro explosives. <i>CrystEngComm</i> , 2021 , 23, 4038-4049	3.3	2
386	Direct coherent multi-ink printing of fabric supercapacitors. Science Advances, 2021, 7,	14.3	44
386	Direct coherent multi-ink printing of fabric supercapacitors. <i>Science Advances</i> , 2021 , 7, Deep Cycling for High-Capacity Li-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2004998	14.3	15
Ť			
385	Deep Cycling for High-Capacity Li-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2004998 Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional	24	15
385	Deep Cycling for High-Capacity Li-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2004998 Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. <i>Advanced Materials</i> , 2021 , 33, e2007977	24	15
385 384 383	Deep Cycling for High-Capacity Li-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2004998 Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. <i>Advanced Materials</i> , 2021 , 33, e2007977 Pangolin-Inspired Stretchable, Microwave-Invisible Metascale. <i>Advanced Materials</i> , 2021 , 33, e2102131 Haptically Quantifying Young's Modulus of Soft Materials Using a Self-Locked Stretchable Strain	24 24 24	15109
385 384 383 382	Deep Cycling for High-Capacity Li-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2004998 Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. <i>Advanced Materials</i> , 2021 , 33, e2007977 Pangolin-Inspired Stretchable, Microwave-Invisible Metascale. <i>Advanced Materials</i> , 2021 , 33, e2102131 Haptically Quantifying Young's Modulus of Soft Materials Using a Self-Locked Stretchable Strain Sensor. <i>Advanced Materials</i> , 2021 , e2104078	24 24 24	15 10 9 10 5
385 384 383 382 381	Deep Cycling for High-Capacity Li-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2004998 Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. <i>Advanced Materials</i> , 2021 , 33, e2007977 Pangolin-Inspired Stretchable, Microwave-Invisible Metascale. <i>Advanced Materials</i> , 2021 , 33, e2102131 Haptically Quantifying Young's Modulus of Soft Materials Using a Self-Locked Stretchable Strain Sensor. <i>Advanced Materials</i> , 2021 , e2104078 Conformal electrodes for on-skin digitalization. <i>SmartMat</i> , 2021 , 2, 252-262 An on-demand plant-based actuator created using conformable electrodes. <i>Nature Electronics</i> ,	24 24 24 24 22.8	15 10 9 10 5

377	An On-Skin Electrode with Anti-Epidermal-Surface-Lipid Function Based on a Zwitterionic Polymer Brush. <i>Advanced Materials</i> , 2020 , 32, e2001130	24	35
376	Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures. <i>Nature Communications</i> , 2020 , 11, 2183	17.4	31
375	A bioinspired stretchable membrane-based compliance sensor. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 11314-11320	11.5	48
374	Challenges and Emerging Opportunities in High-Mobility and Low-Energy-Consumption Organic Field-Effect Transistors. <i>Advanced Energy Materials</i> , 2020 , 10, 2000955	21.8	24
373	Bioinspired Ionic Sensory Systems: The Successor of Electronics. <i>Advanced Materials</i> , 2020 , 32, e200021	824	35
372	Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. <i>Nature Electronics</i> , 2020 , 3, 563-570	28.4	137
371	Mechanically Reinforced Localized Structure Design to Stabilize Solid-Electrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO Nanotubes. <i>Small</i> , 2020 , 16, e2002094	11	26
370	Polymeric Nonviral Gene Delivery Systems for Cancer Immunotherapy. <i>Advanced Therapeutics</i> , 2020 , 3, 1900213	4.9	15
369	A supertough electro-tendon based on spider silk composites. <i>Nature Communications</i> , 2020 , 11, 1332	17.4	42
368	Dielectric Polarization in Inverse Spinel-Structured Mg TiO Coating to Suppress Oxygen Evolution of Li-Rich Cathode Materials. <i>Advanced Materials</i> , 2020 , 32, e2000496	24	59
367	Adhesive Biocomposite Electrodes on Sweaty Skin for Long-Term Continuous Electrophysiological Monitoring 2020 , 2, 478-484		55
366	A highly efficient diatomic nickel electrocatalyst for CO reduction. <i>Chemical Communications</i> , 2020 , 56, 8798-8801	5.8	15
365	Enhanced electrochemical decontamination and water permeation of titanium suboxide reactive electrochemical membrane based on sonoelectrochemistry. <i>Ultrasonics Sonochemistry</i> , 2020 , 69, 105248	8 ^{8.9}	7
364	Thermal-Disrupting Interface Mitigates Intercellular Cohesion Loss for Accurate Topical Antibacterial Therapy. <i>Advanced Materials</i> , 2020 , 32, e1907030	24	37
363	Photothermal Janus Anodes: Photothermal Janus Anode with Photosynthesis-Shielding Effect for Activating Low-Temperature Biological Wastewater Treatment (Adv. Funct. Mater. 7/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070045	15.6	1
362	Bioinspired, Microstructured Silk Fibroin Adhesives for Flexible Skin Sensors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 5601-5609	9.5	44
361	Cyber-Physiochemical Interfaces. Advanced Materials, 2020 , 32, e1905522	24	37
360	Mechanically Interlocked Hydrogel E lastomer Hybrids for On-Skin Electronics. <i>Advanced Functional Materials</i> , 2020 , 30, 1909540	15.6	55

(2020-2020)

359	Mechanical Tolerance of Cascade Bioreactions via Adaptive Curvature Engineering for Epidermal Bioelectronics. <i>Advanced Materials</i> , 2020 , 32, e2000991	24	6
358	Graphene-based wearable piezoresistive physical sensors. <i>Materials Today</i> , 2020 , 36, 158-179	21.8	109
357	Laser-Synthesized Rutile TiO2 with Abundant Oxygen Vacancies for Enhanced Solar Water Evaporation. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 1095-1101	8.3	38
356	Tough hydrogel module towards an implantable remote and controlled release device. <i>Biomaterials Science</i> , 2020 , 8, 960-972	7.4	9
355	Photothermal Janus Anode with Photosynthesis-Shielding Effect for Activating Low-Temperature Biological Wastewater Treatment. <i>Advanced Functional Materials</i> , 2020 , 30, 1909432	15.6	8
354	Emerging intraoral biosensors. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 3341-3356	7.3	6
353	Preparation of Rice Husk-Based C/SiO2 Composites and Their Performance as Anode Materials in Lithium Ion Batteries. <i>Journal of Electronic Materials</i> , 2020 , 49, 1081-1089	1.9	8
352	An Artificial Somatic Reflex Arc. <i>Advanced Materials</i> , 2020 , 32, e1905399	24	64
351	Portable Food-Freshness Prediction Platform Based on Colorimetric Barcode Combinatorics and Deep Convolutional Neural Networks. <i>Advanced Materials</i> , 2020 , 32, e2004805	24	38
350	Bioinspired Mechanically Interlocking Structures. Small Structures, 2020, 1, 2000045	8.7	24
349	Powering Body Area Sensor Networks. <i>Matter</i> , 2020 , 2, 1085-1086	12.7	0
348	A Compliant Ionic Adhesive Electrode with Ultralow Bioelectronic Impedance. <i>Advanced Materials</i> , 2020 , 32, e2003723	24	33
347	Lab-on-Mask for Remote Respiratory Monitoring 2020 , 2, 1178-1181		26
346	2D Material Chemistry: Graphdiyne-based Biochemical Sensing. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 622-630	2.2	60
345	Silicon-Based Anode Materials: Mechanically Reinforced Localized Structure Design to Stabilize SolidElectrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO2 Nanotubes (Small 30/2020). <i>Small</i> , 2020 , 16, 2070169	11	
344	A Carbon Flower Based Flexible Pressure Sensor Made from Large-Area Coating. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000875	4.6	12
343	Organic Field-Effect Transistors: Challenges and Emerging Opportunities in High-Mobility and Low-Energy-Consumption Organic Field-Effect Transistors (Adv. Energy Mater. 29/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070126	21.8	1
342	Devising Materials Manufacturing Toward Lab-to-Fab Translation of Flexible Electronics. <i>Advanced Materials</i> , 2020 , 32, e2001903	24	23

341	Electron Spin Resonance Evidence for Electro-generated Hydroxyl Radicals. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 13333-13343	10.3	20
340	An artificial sensory neuron with visual-haptic fusion. <i>Nature Communications</i> , 2020 , 11, 4602	17.4	55
339	Actin-ring segment switching drives nonadhesive gap closure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 33263-33271	11.5	2
338	Highly Elastic Binders Incorporated with Helical Molecules to Improve the Electrochemical Stability of Black Phosphorous Anodes for Sodium-Ion Batteries. <i>Batteries and Supercaps</i> , 2020 , 3, 101-107	5.6	5
337	Artificial Sensory Memory. <i>Advanced Materials</i> , 2020 , 32, e1902434	24	98
336	Water-Resistant Conformal Hybrid Electrodes for Aquatic Endurable Electrocardiographic Monitoring. <i>Advanced Materials</i> , 2020 , 32, e2001496	24	66
335	Lowering Charge Transfer Barrier of LiMnO via Nickel Surface Doping To Enhance Li Intercalation Kinetics at Subzero Temperatures. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14038-14042	16.4	77
334	Correlating the Peukert® Constant with Phase Composition of Electrode Materials in Fast Lithiation Processes 2019 , 1, 519-525		32
333	Proactively modulating mechanical behaviors of materials at multiscale for mechano-adaptable devices. <i>Chemical Society Reviews</i> , 2019 , 48, 1434-1447	58.5	20
332	The synthesis, morphology and magnetic properties of (Fe1Mnx)3N nanoparticles. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 277-283	2.1	2
331	Three layer-structured cadmium coordination polymers based on flexible 5-(4-pyridyl)-methoxylisophthalic acid: rapid synthesis and luminescence sensing. <i>CrystEngComm</i> , 2019 , 21, 1001-1008	3.3	13
330	Decentralized manufacturing for biomimetics through cooperation of digitization and nanomaterial design. <i>Nanoscale</i> , 2019 , 11, 19179-19189	7.7	1
329	Materials and structural designs of stretchable conductors. Chemical Society Reviews, 2019, 48, 2946-29	65 8.5	189
328	Differential Homeostasis of Sessile and Pendant Epithelium Reconstituted in a 3D-Printed "GeminiChip". <i>Advanced Materials</i> , 2019 , 31, e1900514	24	11
327	Hollow black TiAlO nanocomposites for solar thermal desalination. <i>Nanoscale</i> , 2019 , 11, 9958-9968	7.7	14
326	A New Tetrasubstituted Imidazole Based Difunctional Probe for UV-spectrophotometric and Fluorometric Detecting of Fe3+ Ion in Aqueous Solution. <i>Chemical Research in Chinese Universities</i> , 2019 , 35, 200-208	2.2	3
325	Oxygen-vacancies-engaged efficient carrier utilization for the photocatalytic coupling reaction. <i>Journal of Catalysis</i> , 2019 , 373, 116-125	7.3	15
324	Engineering 2D Architectures toward High-Performance Micro-Supercapacitors. <i>Advanced Materials</i> , 2019 , 31, e1802793	24	143

323	Unraveling the Formation of Amorphous MoS2 Nanograins during the Electrochemical Delithiation Process. <i>Advanced Functional Materials</i> , 2019 , 29, 1904843	15.6	26
322	A wireless body area sensor network based on stretchable passive tags. <i>Nature Electronics</i> , 2019 , 2, 361	-3684	258
321	Hydrogels for Artificial Vitreous: From Prolonged Substitution to Elicited Regeneration 2019 , 1, 285-289	9	17
320	Cesium Oleate Passivation for Stable Perovskite Photovoltaics. <i>ACS Applied Materials & Amp;</i> Interfaces, 2019 , 11, 27882-27889	9.5	8
319	Synthesis, Structure, and Magnetic Properties of B-Doped Fe3N@C Magnetic Nanomaterial as Catalyst for the Hydrogen Evolution Reaction. <i>Physica Status Solidi (B): Basic Research</i> , 2019 , 256, 19001	1 ¹ 1 ³	3
318	Highly Stable and Stretchable Conductive Films through Thermal-Radiation-Assisted Metal Encapsulation. <i>Advanced Materials</i> , 2019 , 31, e1901360	24	56
317	Bioinspired Microfluidic Device by Integrating a Porous Membrane and Heterostructured Nanoporous Particles for Biomolecule Cleaning. <i>ACS Nano</i> , 2019 , 13, 8374-8381	16.7	26
316	A silk-based sealant with tough adhesion for instant hemostasis of bleeding tissues. <i>Nanoscale Horizons</i> , 2019 , 4, 1333-1341	10.8	54
315	Mechanocombinatorially Screening Sensitivity of Stretchable Strain Sensors. <i>Advanced Materials</i> , 2019 , 31, e1903130	24	47
314	High-Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900347	6.4	33
313	Synthesis, Structure and Properties Comparison of Fe3N Doped with Ni, Mn and Co. <i>ChemistrySelect</i> , 2019 , 4, 5945-5949	1.8	2
312	Interfacial Lattice-Strain-Driven Generation of Oxygen Vacancies in an Aerobic-Annealed TiO (B) Electrode. <i>Advanced Materials</i> , 2019 , 31, e1906156	24	33
311	The Rise of Bioinspired Ionotronics. <i>Advanced Intelligent Systems</i> , 2019 , 1, 1900073	6	25
310	Nanomaterials Discovery and Design through Machine Learning. <i>Small Methods</i> , 2019 , 3, 1900025	12.8	33
309	Electrode Materials: Interfacial Lattice-Strain-Driven Generation of Oxygen Vacancies in an Aerobic-Annealed TiO2(B) Electrode (Adv. Mater. 52/2019). <i>Advanced Materials</i> , 2019 , 31, 1970367	24	5
308	Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. <i>Nature Communications</i> , 2019 , 10, 5384	17.4	126
307	Synthesis, Morphology and Magnetic Properties of Fe3C/CNTs Composites by a g-C3N4 Route. <i>ChemistrySelect</i> , 2019 , 4, 13596-13600	1.8	0
306	Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors. <i>Accounts of Chemical Research</i> , 2019 , 52, 82-90	24.3	32

305	Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics. <i>Advanced Functional Materials</i> , 2019 , 29, 1806220	15.6	342
304	Surface Complexation for Photocatalytic Organic Transformations. <i>Bulletin of the Chemical Society of Japan</i> , 2019 , 92, 505-510	5.1	22
303	Custom-Made Electrochemical Energy Storage Devices. ACS Energy Letters, 2019, 4, 606-614	20.1	72
302	A Photoresponsive Rutile TiO Heterojunction with Enhanced Electron-Hole Separation for High-Performance Hydrogen Evolution. <i>Advanced Materials</i> , 2019 , 31, e1806596	24	137
301	Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices. <i>Nature Communications</i> , 2019 , 10, 81	17.4	125
300	Approaching the Lithiation Limit of MoS While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3521-3526	16.4	44
299	Synthesis, characterization and properties of poly(N-allyl-tetrasubstituted imidazole). <i>Polymer Bulletin</i> , 2019 , 76, 5683-5699	2.4	1
298	Approaching the Lithiation Limit of MoS2 While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage. <i>Angewandte Chemie</i> , 2019 , 131, 3559-3564	3.6	12
297	Tactile Chemomechanical Transduction Based on an Elastic Microstructured Array to Enhance the Sensitivity of Portable Biosensors. <i>Advanced Materials</i> , 2019 , 31, e1803883	24	34
296	Broadband Extrinsic Self-Trapped Exciton Emission in Sn-Doped 2D Lead-Halide Perovskites. <i>Advanced Materials</i> , 2019 , 31, e1806385	24	94
295	Fluoroethylene Carbonate Enabling a Robust LiF-rich Solid Electrolyte Interphase to Enhance the Stability of the MoS2 Anode for Lithium-Ion Storage. <i>Angewandte Chemie</i> , 2018 , 130, 3718-3722	3.6	22
294	Flexible Supercapacitors Based on Two-Dimensional Materials 2018 , 161-197		2
293	Supramolecular hydrogels for antimicrobial therapy. <i>Chemical Society Reviews</i> , 2018 , 47, 6917-6929	58.5	128
292	Plasticizing Silk Protein for On-Skin Stretchable Electrodes. <i>Advanced Materials</i> , 2018 , 30, e1800129	24	160
291	Editable TiO Nanomaterial-Modified Paper in Situ for Highly Efficient Detection of Carcinoembryonic Antigen by Photoelectrochemical Method. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 14594-14601	9.5	36
290	Fluoroethylene Carbonate Enabling a Robust LiF-rich Solid Electrolyte Interphase to Enhance the Stability of the MoS Anode for Lithium-Ion Storage. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3656-3660	16.4	117
289	Precursor non-stoichiometry to enable improved CHNHPbBr nanocrystal LED performance. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 5918-5925	3.6	5
288	Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. <i>Advanced Materials</i> , 2018 , 30, e1706589	24	213

287	Mechano-Based Transductive Sensing for Wearable Healthcare. Small, 2018, 14, e1702933	11	66
286	Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices. <i>Advanced Materials</i> , 2018 , 30, e1704347	24	54
285	Synergistic Lysosomal Activatable Polymeric Nanoprobe Encapsulating pH Sensitive Imidazole Derivative for Tumor Diagnosis. <i>Small</i> , 2018 , 14, 1703164	11	31
284	Mediating Short-Term Plasticity in an Artificial Memristive Synapse by the Orientation of Silica Mesopores. <i>Advanced Materials</i> , 2018 , 30, e1706395	24	69
283	Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5280-5289	16.4	312
282	CoFe2O4 Nanocrystals Mediated Crystallization Strategy for Magnetic Functioned ZSM-5 Catalysts. <i>Advanced Functional Materials</i> , 2018 , 28, 1802088	15.6	10
281	Programmable Negative Differential Resistance Effects Based on Self-Assembled Au@PPy Core-Shell Nanoparticle Arrays. <i>Advanced Materials</i> , 2018 , 30, e1802731	24	45
2 80	Synthesis of Highly Sensitive Fluorescent Probe Based on Tetrasubstituted Imidazole and Its Application for Selective Detection of Ag+ Ion in Aqueous Media. <i>Chemical Research in Chinese Universities</i> , 2018 , 34, 369-374	2.2	9
279	Correlating the Surface Basicity of Metal Oxides with Photocatalytic Hydroxylation of Boronic Acids to Alcohols. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9780-9784	16.4	25
278	Calcinable Polymer Membrane with Revivability for Efficient Oily-Water Remediation. <i>Advanced Materials</i> , 2018 , 30, e1801870	24	139
277	An Artificial Sensory Neuron with Tactile Perceptual Learning. <i>Advanced Materials</i> , 2018 , 30, e1801291	24	216
276	Combinatorial Nano-Bio Interfaces. ACS Nano, 2018, 12, 5078-5084	16.7	59
275	Correlating the Surface Basicity of Metal Oxides with Photocatalytic Hydroxylation of Boronic Acids to Alcohols. <i>Angewandte Chemie</i> , 2018 , 130, 9928-9932	3.6	7
274	Biomechano-Interactive Materials and Interfaces. <i>Advanced Materials</i> , 2018 , 30, e1800572	24	75
273	Surface Strain Redistribution on Structured Microfibers to Enhance Sensitivity of Fiber-Shaped Stretchable Strain Sensors. <i>Advanced Materials</i> , 2018 , 30, 1704229	24	159
272	Probing the toxicity mechanism of multiwalled carbon nanotubes on bacteria. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 5003-5012	5.1	19
271	Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO Nanowire Composite. <i>Advanced Materials</i> , 2018 , 30, 1704531	24	202
270	Multi-responsive luminescent sensor based on three dimensional lanthanide metal b rganic framework. <i>New Journal of Chemistry</i> , 2018 , 42, 19485-19493	3.6	19

269	Bio-Inspired Plasmonic Photocatalysts. Small Methods, 2018, 3, 1800295	12.8	9
268	A Novel Flexible Sensor for Muscle Shape Change Monitoring in Limb Motion Recognition. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2018 , 2018, 4665-4668	0.9	4
267	Honeycomb-Lantern-Inspired 3D Stretchable Supercapacitors with Enhanced Specific Areal Capacitance. <i>Advanced Materials</i> , 2018 , 30, e1805468	24	114
266	Storing electricity as chemical energy: beyond traditional electrochemistry and double-layer compression. <i>Energy and Environmental Science</i> , 2018 , 11, 3069-3074	35.4	24
265	Mechano-regulated metal-organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. <i>Nature Communications</i> , 2018 , 9, 3813	17.4	46
264	3D-Structured Stretchable Strain Sensors for Out-of-Plane Force Detection. <i>Advanced Materials</i> , 2018 , 30, e1707285	24	62
263	Stretchable Conductive Fibers Based on a Cracking Control Strategy for Wearable Electronics. <i>Advanced Functional Materials</i> , 2018 , 28, 1801683	15.6	67
262	Identifying the Origin and Contribution of Surface Storage in TiO (B) Nanotube Electrode by In Situ Dynamic Valence State Monitoring. <i>Advanced Materials</i> , 2018 , 30, e1802200	24	72
261	Engineering subcellular-patterned biointerfaces to regulate the surface wetting of multicellular spheroids. <i>Nano Research</i> , 2018 , 11, 5704-5715	10	9
2 60	Enhancing the Matrix Addressing of Flexible Sensory Arrays by a Highly Nonlinear Threshold Switch. <i>Advanced Materials</i> , 2018 , 30, e1802516	24	47
259	Elastic substrates for stretchable devices. MRS Bulletin, 2017, 42, 103-107	3.2	30
258	Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over BiOI-loaded ZnO composites. <i>Journal of Colloid and Interface Science</i> , 2017 , 494, 130-138	9.3	98
257	Programmable Nano-Bio Interfaces for Functional Biointegrated Devices. <i>Advanced Materials</i> , 2017 , 29, 1605529	24	91
256	Healable Transparent Electronic Devices. <i>Advanced Functional Materials</i> , 2017 , 27, 1606339	15.6	89
255	High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride). <i>Nano Energy</i> , 2017 , 37, 126-135	17.1	113
254	Metal-sulfide-decorated ZnO/Si nano-heterostructure arrays with enhanced photoelectrochemical performance. <i>Materials Research Bulletin</i> , 2017 , 96, 503-508	5.1	6
253	A flexible transparent colorimetric wrist strap sensor. <i>Nanoscale</i> , 2017 , 9, 869-874	7.7	81
252	Nanomechanically Visualizing Drug-Cell Interaction at the Early Stage of Chemotherapy. <i>ACS Nano</i> , 2017 , 11, 6996-7005	16.7	35

251	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381	16.7	714
250	Al(2)O(3) Surface Complexation for Photocatalytic Organic Transformations. <i>Journal of the American Chemical Society</i> , 2017 , 139, 269-276	16.4	55
249	Reducing the Charge Carrier Transport Barrier in Functionally Layer-Graded Electrodes. <i>Angewandte Chemie</i> , 2017 , 129, 15043-15048	3.6	15
248	Nature-Inspired Structural Materials for Flexible Electronic Devices. <i>Chemical Reviews</i> , 2017 , 117, 1289	3 -1 8294	1 ₄₀₁
247	Reducing the Charge Carrier Transport Barrier in Functionally Layer-Graded Electrodes. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14847-14852	16.4	71
246	Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing. <i>Advanced Materials</i> , 2017 , 29, 1702800	24	110
245	Artificial interphase engineering of electrode materials to improve the overall performance of lithium-ion batteries. <i>Nano Research</i> , 2017 , 10, 4115-4138	10	38
244	Stretchable Motion Memory Devices Based on Mechanical Hybrid Materials. <i>Advanced Materials</i> , 2017 , 29, 1701780	24	55
243	Biointegrated Devices: Programmable Nano B io Interfaces for Functional Biointegrated Devices (Adv. Mater. 26/2017). <i>Advanced Materials</i> , 2017 , 29,	24	3
242	Water-Soluble Sericin Protein Enabling Stable Solid-Electrolyte Interphase for Fast Charging High Voltage Battery Electrode. <i>Advanced Materials</i> , 2017 , 29, 1701828	24	114
241	Nanomechanical Force Mapping of Restricted Cell-To-Cell Collisions Oscillating between Contraction and Relaxation. <i>ACS Nano</i> , 2017 , 11, 12302-12310	16.7	20
240	3D Printed Photoresponsive Devices Based on Shape Memory Composites. <i>Advanced Materials</i> , 2017 , 29, 1701627	24	257
239	Synthesis, structure and magnetic properties of Fe3N nanoparticles. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 15701-15707	2.1	10
238	High-Adhesion Stretchable Electrodes Based on Nanopile Interlocking. <i>Advanced Materials</i> , 2017 , 29, 1603382	24	122
237	3D Macroporous Nitrogen-Enriched Graphitic Carbon Scaffold for Efficient Bioelectricity Generation in Microbial Fuel Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1601364	21.8	102
236	High-Performance Photothermal Conversion of Narrow-Bandgap Ti O Nanoparticles. <i>Advanced Materials</i> , 2017 , 29, 1603730	24	529
235	Design of Architectures and Materials in In-Plane Micro-supercapacitors: Current Status and Future Challenges. <i>Advanced Materials</i> , 2017 , 29, 1602802	24	295
234	Chemically tunable photoresponse of ultrathin polypyrrole. <i>Nanoscale</i> , 2017 , 9, 7760-7764	7.7	15

233	Orientational Coupling Locally Orchestrates a Cell Migration Pattern for Re-Epithelialization. <i>Advanced Materials</i> , 2017 , 29, 1700145	24	31
232	A review on recent advances in the comprehensive application of rice husk ash. <i>Research on Chemical Intermediates</i> , 2016 , 42, 893-913	2.8	26
231	Thin-film organic semiconductor devices: from flexibility to ultraflexibility. <i>Science China Materials</i> , 2016 , 59, 589-608	7.1	27
230	Soft Thermal Sensor with Mechanical Adaptability. <i>Advanced Materials</i> , 2016 , 28, 9175-9181	24	155
229	Stretchable Organic Semiconductor Devices. <i>Advanced Materials</i> , 2016 , 28, 9243-9265	24	139
228	Flexible Piezoelectric Nanocomposite Generators Based on Formamidinium Lead Halide Perovskite Nanoparticles. <i>Advanced Functional Materials</i> , 2016 , 26, 7708-7716	15.6	112
227	Biomass-Derived Porous FeC/Tungsten Carbide/Graphitic Carbon Nanocomposite for Efficient Electrocatalysis of Oxygen Reduction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 32307-32316	9.5	73
226	Physically Transient Resistive Switching Memory Based on Silk Protein. <i>Small</i> , 2016 , 12, 2715-9	11	121
225	Conductive Inks Based on a Lithium Titanate Nanotube Gel for High-Rate Lithium-Ion Batteries with Customized Configuration. <i>Advanced Materials</i> , 2016 , 28, 1567-76	24	154
224	Bio-Inspired Mechanotactic Hybrids for Orchestrating Traction-Mediated Epithelial Migration. <i>Advanced Materials</i> , 2016 , 28, 3102-10	24	56
223	Visible-Light-Induced Photoredox Catalysis of Dye-Sensitized Titanium Dioxide: Selective Aerobic Oxidation of Organic Sulfides. <i>Angewandte Chemie</i> , 2016 , 128, 4775-4778	3.6	36
222	Visible-Light-Induced Photoredox Catalysis of Dye-Sensitized Titanium Dioxide: Selective Aerobic Oxidation of Organic Sulfides. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4697-700	16.4	179
221	Prolonged Electron Lifetime in Ordered TiO2 Mesophyll Cell-Like Microspheres for Efficient Photocatalytic Water Reduction and Oxidation. <i>Small</i> , 2016 , 12, 2291-9	11	45
220	Resistive Switching: Physically Transient Resistive Switching Memory Based on Silk Protein (Small 20/2016). <i>Small</i> , 2016 , 12, 2802-2802	11	
219	Skin-Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture. <i>Advanced Materials</i> , 2016 , 28, 1559-66	24	135
218	Enhanced Photoresponse of Conductive Polymer Nanowires Embedded with Au Nanoparticles. <i>Advanced Materials</i> , 2016 , 28, 2978-82	24	34
217	An efficient solvent-free synthesis of isoxazolyl-1,4-dihydropyridines on solid support SiO2 under microwave irradiation. <i>Monatshefte Fil Chemie</i> , 2016 , 147, 1605-1614	1.4	9
216	Ambient dissolutionEecrystallization towards large-scale preparation of V 2 O 5 nanobelts for high-energy battery applications. <i>Nano Energy</i> , 2016 , 22, 583-593	17.1	82

215	AlN with Strong Blue Emission Synthesized Through a Solventless Route. <i>Nano</i> , 2016 , 11, 1650016	1.1	2
214	Flexible Transparent Electronic Gas Sensors. <i>Small</i> , 2016 , 12, 3748-56	11	189
213	Alcohol-Mediated Resistance-Switching Behavior in Metal©rganic Framework-Based Electronic Devices. <i>Angewandte Chemie</i> , 2016 , 128, 9030-9034	3.6	16
212	Bioinspired Nanosucker Array for Enhancing Bioelectricity Generation in Microbial Fuel Cells. <i>Advanced Materials</i> , 2016 , 28, 270-5	24	81
211	Flexible Integrated Electrical Cables Based on Biocomposites for Synchronous Energy Transmission and Storage. <i>Advanced Functional Materials</i> , 2016 , 26, 3472-3479	15.6	63
210	Polymer Nanowires: Enhanced Photoresponse of Conductive Polymer Nanowires Embedded with Au Nanoparticles (Adv. Mater. 15/2016). <i>Advanced Materials</i> , 2016 , 28, 3031-3031	24	1
209	Flexible and Stretchable Devices. Advanced Materials, 2016 , 28, 4177-9	24	309
208	Silk Fibroin for Flexible Electronic Devices. <i>Advanced Materials</i> , 2016 , 28, 4250-65	24	340
207	Alcohol-Mediated Resistance-Switching Behavior in Metal-Organic Framework-Based Electronic Devices. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8884-8	16.4	50
206	Ultra-Lightweight Resistive Switching Memory Devices Based on Silk Fibroin. <i>Small</i> , 2016 , 12, 3360-5	11	76
205	Nanostructured TiO2-Based Anode Materials for High-Performance Rechargeable Lithium-Ion Batteries. <i>ChemNanoMat</i> , 2016 , 2, 764-775	3.5	90
204	Wet-Chemical Processing of Phosphorus Composite Nanosheets for High-Rate and High-Capacity Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1502409	21.8	173
203	Synergistic Effects of Water and Oxygen Molecule Co-adsorption on (001) Surfaces of Tetragonal CH3NH3PbI3: A First-Principles Study. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 28448-28455	3.8	40
202	Calcium-alginate/carbon nanotubes/TiO composite beads for removal of bisphenol A. <i>Water Science and Technology</i> , 2016 , 74, 1585-1593	2.2	9
201	Photoacoustic induced surface acoustic wave sensor for concurrent opto-mechanical microfluidic sensing of dyes and plasmonic nanoparticles. <i>RSC Advances</i> , 2016 , 6, 50238-50244	3.7	9
200	Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry. <i>Nanoscale</i> , 2016 , 8, 10669-76	7.7	4
199	Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors. <i>Nanoscale</i> , 2016 , 8, 12073-80	7.7	106
198	Memory Arrays: Skin-Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture (Adv. Mater. 8/2016). <i>Advanced Materials</i> , 2016 , 28, 1526-1526	24	3

197	Enhanced Cathodic Oxygen Reduction and Power Production of Microbial Fuel Cell Based on Noble-Metal-Free Electrocatalyst Derived from Metal-Organic Frameworks. <i>Advanced Energy Materials</i> , 2016 , 6, 1501497	21.8	207
196	Cooperative photoredox catalysis. <i>Chemical Society Reviews</i> , 2016 , 45, 3026-38	58.5	264
195	Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. <i>Nanoscale</i> , 2016 , 8, 11284-90	7.7	79
194	Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion. <i>Advanced Materials</i> , 2015 , 27, 2207-14	24	141
193	Bio-inspired micropatterned hydrogel to direct and deconstruct hierarchical processing of geometry-force signals by human mesenchymal stem cells during smooth muscle cell differentiation. NPG Asia Materials, 2015, 7, e199-e199	10.3	40
192	Achieving significantly enhanced visible-light photocatalytic efficiency using a polyelectrolyte: the composites of exfoliated titania nanosheets, graphene, and poly(diallyl-dimethyl-ammonium chloride). <i>Nanoscale</i> , 2015 , 7, 14002-9	7.7	22
191	Tertiary amine mediated aerobic oxidation of sulfides into sulfoxides by visible-light photoredox catalysis on TiO. <i>Chemical Science</i> , 2015 , 6, 5000-5005	9.4	81
190	Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12016-12022	13	34
189	Renewable-juglone-based high-performance sodium-ion batteries. <i>Advanced Materials</i> , 2015 , 27, 2348-5	5 4 4	181
188	Rational material design for ultrafast rechargeable lithium-ion batteries. <i>Chemical Society Reviews</i> , 2015 , 44, 5926-40	58.5	716
187	Carbon Nanotube-Based Thin Films for Flexible Supercapacitors 2015 , 279-299		1
186	Highly stretchable gold nanobelts with sinusoidal structures for recording electrocorticograms. <i>Advanced Materials</i> , 2015 , 27, 3145-51	24	114
185	Use of Bamboo Powder Waste for Removal of Bisphenol A in Aqueous Solution. <i>Water, Air, and Soil Pollution</i> , 2015 , 226, 1	2.6	6
184	Suspended Wavy Graphene Microribbons for Highly Stretchable Microsupercapacitors. <i>Advanced Materials</i> , 2015 , 27, 5559-66	24	228
183	Highly Efficient Phosphate Scavenger Based on Well-Dispersed La(OH)3 Nanorods in Polyacrylonitrile Nanofibers for Nutrient-Starvation Antibacteria. <i>ACS Nano</i> , 2015 , 9, 9292-302	16.7	123
182	Single-crystalline rutile TiO2 nano-flower hierarchical structures for enhanced photocatalytic selective oxidation from amine to imine. <i>RSC Advances</i> , 2015 , 5, 103895-103900	3.7	17
181	Conjugated polymer and drug co-encapsulated nanoparticles for chemo- and photo-thermal combination therapy with two-photon regulated fast drug release. <i>Nanoscale</i> , 2015 , 7, 3067-76	7.7	81
180	Gram-positive antimicrobial activity of amino acid-based hydrogels. Advanced Materials, 2015, 27, 648-5	4 24	148

(2015-2015)

179	Hybrid multi-walled carbon nanotubes-alginate-polysulfone beads for adsorption of bisphenol-A from aqueous solution. <i>Desalination and Water Treatment</i> , 2015 , 54, 1167-1183		12	
178	Synergistic photocatalytic aerobic oxidation of sulfides and amines on TiO under visible-light irradiation. <i>Chemical Science</i> , 2015 , 6, 1075-1082	9.4	79	
177	A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks. <i>Nanoscale</i> , 2015 , 7, 965-74	7.7	49	
176	Memory Devices: Configurable Resistive Switching between Memory and Threshold Characteristics for Protein-Based Devices (Adv. Funct. Mater. 25/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 3980-	3 9 86	2	
175	Regenerative Medicine: Conjugated Polymer Nanodots as Ultrastable Long-Term Trackers to Understand Mesenchymal Stem Cell Therapy in Skin Regeneration (Adv. Funct. Mater. 27/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 4262-4262	15.6		
174	Nanostructures: Highly Stretchable Gold Nanobelts with Sinusoidal Structures for Recording Electrocorticograms (Adv. Mater. 20/2015). <i>Advanced Materials</i> , 2015 , 27, 3219-3219	24	4	
173	Rational Design of Materials Interface for Efficient Capture of Circulating Tumor Cells. <i>Advanced Science</i> , 2015 , 2, 1500118	13.6	51	
172	Self-Assembly of Organic Molecules into Nanostructures 2015 , 21-94			
171	Nanostructured Substrates for Circulating Tumor Cell Capturing 2015 , 293-308			
170	Organic Nano Field-Effect Transistor 2015 , 309-356			
169	Nanoparticles: Important Tools to Overcome the Blood B rain Barrier and Their Use for Brain Imaging 2015 , 109-130			
168	Organic Nanophotonics: Controllable Assembly of Optofunctional Molecules toward Low-Dimensional Materials with Desired Photonic Properties 2015 , 131-160			
167	Conductive Polymer Nanostructures 2015 , 233-258			
166	Chemical Reactions for the Synthesis of Organic Nanomaterials on Surfaces 2015 , 1-20		1	
165	Micro/Nanocrystal Conversion beyond Inorganic Nanostructures 2015, 385-400			
164	Functional Lipid Assemblies by Dip-Pen Nanolithography and Polymer Pen Lithography 2015 , 161-186		1	
163	Supramolecular Nanotechnology: Soft Assembly of Hard Nanomaterials 2015 , 95-108			
162	PEG-Based Antigen-Presenting Cell Surrogates for Immunological Applications 2015 , 187-216			

Soft Matter Assembly for Atomically Precise Fabrication of Solid Oxide **2015**, 217-232

160	Colorimetric Detection of Creatinine Based on Plasmonic Nanoparticles via Synergistic Coordination Chemistry. <i>Small</i> , 2015 , 11, 4104-10	11	39
159	Conjugated Polymer Nanodots as Ultrastable Long-Term Trackers to Understand Mesenchymal Stem Cell Therapy in Skin Regeneration. <i>Advanced Functional Materials</i> , 2015 , 25, 4263-4273	15.6	43
158	Programmable Nanocarbon-Based Architectures for Flexible Supercapacitors. <i>Advanced Energy Materials</i> , 2015 , 5, 1500677	21.8	78
157	Role of Cytoskeletal Tension in the Induction of Cardiomyogenic Differentiation in Micropatterned Human Mesenchymal Stem Cell. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1399-407	10.1	21
156	Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. <i>Advanced Materials</i> , 2015 , 27, 6002-8	24	187
155	Highly Sensitive Electro-Plasmonic Switches Based on Fivefold Stellate Polyhedral Gold Nanoparticles. <i>Small</i> , 2015 , 11, 5395-401	11	11
154	Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing. <i>Small</i> , 2015 , 11, 5409-15	11	186
153	Self-Protection of Electrochemical Storage Devices via a Thermal Reversible Sol-Gel Transition. <i>Advanced Materials</i> , 2015 , 27, 5593-8	24	73
152	Healable, Transparent, Room-Temperature Electronic Sensors Based on Carbon Nanotube Network-Coated Polyelectrolyte Multilayers. <i>Small</i> , 2015 , 11, 5807-13	11	126
151	Configurable Resistive Switching between Memory and Threshold Characteristics for Protein-Based Devices. <i>Advanced Functional Materials</i> , 2015 , 25, 3825-3831	15.6	142
150	Thickness-Gradient Films for High Gauge Factor Stretchable Strain Sensors. <i>Advanced Materials</i> , 2015 , 27, 6230-7	24	230
149	Self-Healing Electronic Nanodevices 2015 , 401-418		
148	DNA-Induced Nanoparticle Assembly 2015 , 259-292		
147	Resistive Switching Memory Devices Based on Proteins. <i>Advanced Materials</i> , 2015 , 27, 7670-6	24	117
146	3D lanthanide metalBrganic frameworks constructed from lanthanide formate skeletons and 3,5-bis(4?-carboxy-phenyl)-1,2,4-triazole connectors: synthesis, structure and luminescence. <i>RSC Advances</i> , 2015 , 5, 106107-106112	3.7	8
145	A cell apoptosis probe based on fluorogen with aggregation induced emission characteristics. <i>ACS Applied Materials & District Applied & District App</i>	9.5	57
144	Towards active plasmonic response devices. <i>Nano Research</i> , 2015 , 8, 406-417	10	48

(2014-2015)

143	Crystallization-induced red emission of a facilely synthesized biodegradable indigo derivative. <i>Chemical Communications</i> , 2015 , 51, 3375-8	5.8	38
142	Porous graphene materials for water remediation. <i>Small</i> , 2014 , 10, 3434-41	11	94
141	Structural diversity of bulky graphene materials. <i>Small</i> , 2014 , 10, 2200-14	11	39
140	Optoelectronics of organic nanofibers formed by co-assembly of porphyrin and perylenediimide. <i>Small</i> , 2014 , 10, 2776-81, 2740	11	23
139	Plasmonic Enhanced Optoelectronic Devices. <i>Plasmonics</i> , 2014 , 9, 859-866	2.4	68
138	A universal strategy to prepare functional porous graphene hybrid architectures. <i>Advanced Materials</i> , 2014 , 26, 3681-7	24	152
137	A mechanically and electrically self-healing supercapacitor. <i>Advanced Materials</i> , 2014 , 26, 3638-43	24	304
136	Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. <i>Advanced Materials</i> , 2014 , 26, 4855-62	24	364
135	Cu2ZnSn(S,Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 124, 55-60	6.4	85
134	Heterogeneous visible light photocatalysis for selective organic transformations. <i>Chemical Society Reviews</i> , 2014 , 43, 473-86	58.5	1061
133	Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 13488-92	16.4	152
132	Investigation of electron transfer from isolated spinach thylakoids to indium tin oxide. <i>RSC Advances</i> , 2014 , 4, 48815-48820	3.7	18
131	Effect of Eu, Tb codoping on the luminescent properties of multifunctional nanocomposites. <i>RSC Advances</i> , 2014 , 4, 22792	3.7	2
130	A Synergistic Capture Strategy for Enhanced Detection and Elimination of Bacteria. <i>Angewandte Chemie</i> , 2014 , 126, 5947-5951	3.6	13
129	Macroscopic Graphene Structures: Preparation, Properties, and Applications 2014 , 291-350		3
128	Orthogonally engineering matrix topography and rigidity to regulate multicellular morphology. <i>Advanced Materials</i> , 2014 , 26, 5786-93	24	47
127	Nanoparticles strengthen intracellular tension and retard cellular migration. <i>Nano Letters</i> , 2014 , 14, 83-	811.5	168
126	Nanotubes: Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries (Adv. Mater. 35/2014). <i>Advanced Materials</i> , 2014 , 26, 6046-6046	24	6

125	Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve High-Rate and Long-Life Lithium-Ion Batteries. Angewandte Chemie, 2014, 126, 13706-13710	3.6	28
124	Synergistic modulation of surface interaction to assemble metal nanoparticles into two-dimensional arrays with tunable plasmonic properties. <i>Small</i> , 2014 , 10, 609-16	11	42
123	Optical reading of contaminants in aqueous media based on gold nanoparticles. Small, 2014, 10, 3461-7	7911	69
122	Artificial Skin: Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors (Small 18/2014). <i>Small</i> , 2014 , 10, 3594-3594	11	3
121	Mechanical force-driven growth of elongated bending TiO2 -based nanotubular materials for ultrafast rechargeable lithium ion batteries. <i>Advanced Materials</i> , 2014 , 26, 6111-8	24	358
120	High-performance and tailorable pressure sensor based on ultrathin conductive polymer film. <i>Small</i> , 2014 , 10, 1466-72	11	157
119	A synergistic capture strategy for enhanced detection and elimination of bacteria. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5837-41	16.4	119
118	Microstructured graphene arrays for highly sensitive flexible tactile sensors. <i>Small</i> , 2014 , 10, 3625-31	11	426
117	Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS-Au nanorod arrays. <i>Advanced Materials</i> , 2014 , 26, 3506-12	24	138
116	Supercapacitors: A Mechanically and Electrically Self-Healing Supercapacitor (Adv. Mater. 22/2014). <i>Advanced Materials</i> , 2014 , 26, 3637-3637	24	5
115	Innentitelbild: A Synergistic Capture Strategy for Enhanced Detection and Elimination of Bacteria (Angew. Chem. 23/2014). <i>Angewandte Chemie</i> , 2014 , 126, 5822-5822	3.6	
114	Rtktitelbild: Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve High-Rate and Long-Life Lithium-Ion Batteries (Angew. Chem. 49/2014). <i>Angewandte Chemie</i> , 2014 , 126, 13840-13840	3.6	
113	Dependence of Plasmonic Properties on Electron Densities for Various Coupled Au Nanostructures. Journal of Physical Chemistry C, 2014 , 118, 27531-27538	3.8	19
112	Spatially confined assembly of nanoparticles. <i>Accounts of Chemical Research</i> , 2014 , 47, 3009-17	24.3	81
111	Bioengineered tunable memristor based on protein nanocage. Small, 2014, 10, 277-83	11	59
110	Three-Dimensional Graphene Composite Macroscopic Structures for Capture of Cancer Cells. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1300043	4.6	77
109	Bioelectrocatalysis: Graphene Carrier for Magneto-Controllable Bioelectrocatalysis (Small 4/2014). <i>Small</i> , 2014 , 10, 646-646	11	
108	Contaminant Detection: Optical Reading of Contaminants in Aqueous Media Based on Gold Nanoparticles (Small 17/2014). <i>Small</i> , 2014 , 10, 3426-3426	11	1

107	Stimuli-Responsive Supramolecular Interfaces for Controllable Bioelectrocatalysis. <i>ChemElectroChem</i> , 2014 , 1, 1602-1612	4.3	30
106	Orthogonally modulated molecular transport junctions for resettable electronic logic gates. <i>Nature Communications</i> , 2014 , 5, 3023	17.4	179
105	Graphene carrier for magneto-controllable bioelectrocatalysis. Small, 2014, 10, 647-52	11	18
104	Nanofluidics for giant power harvesting. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 7640-1	16.4	27
103	Flexible Supercapacitors Development of Bendable Carbon Architectures. <i>ACS Symposium Series</i> , 2013 , 101-141	0.4	4
102	Two-dimensional heterospectral correlation analysis of the redox-induced conformational transition in cytochrome c using surface-enhanced Raman and infrared absorption spectroscopies on a two-layer gold surface. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 9606-14	3.4	35
101	Sericin for resistance switching device with multilevel nonvolatile memory. <i>Advanced Materials</i> , 2013 , 25, 5498-503	24	184
100	Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity. <i>Nanoscale</i> , 2013 , 5, 1238	3 ₇ 7 ₇	39
99	Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 82-88	13	126
98	A colorimetric logic gate based on free gold nanoparticles and the coordination strategy between melamine and mercury ions. <i>Chemical Communications</i> , 2013 , 49, 4196-8	5.8	112
97	Biophysical responses upon the interaction of nanomaterials with cellular interfaces. <i>Accounts of Chemical Research</i> , 2013 , 46, 782-91	24.3	111
96	Controlled synthesis of hollow CuEk Te nanocrystals based on the Kirkendall effect and their enhanced CO gas-sensing properties. <i>Small</i> , 2013 , 9, 793-9	11	87
95	Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. <i>Advanced Materials</i> , 2013 , 25, 1058-64	24	440
94	Visible photoresponse of single-layer graphene decorated with TiOIhanoparticles. Small, 2013, 9, 2076-	8 <u>0</u> 1	55
93	Atomically flat, large-sized, two-dimensional organic nanocrystals. <i>Small</i> , 2013 , 9, 990-5	11	45
92	Ambient fabrication of large-area graphene films via a synchronous reduction and assembly strategy. <i>Advanced Materials</i> , 2013 , 25, 2957-62	24	162
91	Three-dimensional CdS-titanate composite nanomaterials for enhanced visible-light-driven hydrogen evolution. <i>Small</i> , 2013 , 9, 996-1002	11	118
90	Gold nanotip array for ultrasensitive electrochemical sensing and spectroscopic monitoring. <i>Small</i> , 2013 , 9, 2260-5	11	22

89	Porous Graphene: Functional Free-Standing Graphene Honeycomb Films (Adv. Funct. Mater. 23/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 2971-2971	15.6	2
88	Understanding the Role of Nanostructures for Efficient Hydrogen Generation on Immobilized Photocatalysts. <i>Advanced Energy Materials</i> , 2013 , 3, 1368-1380	21.8	118
87	Functional Free-Standing Graphene Honeycomb Films. Advanced Functional Materials, 2013, 23, 2972-29	9 78 .6	99
86	All-solid-state flexible ultrathin micro-supercapacitors based on graphene. <i>Advanced Materials</i> , 2013 , 25, 4035-42	24	449
85	Synthesis of Anisotropic Concave Gold Nanocuboids with Distinctive Plasmonic Properties. <i>Chemistry of Materials</i> , 2013 , 25, 2470-2475	9.6	57
84	Hollow Nanostructures: Efficient Ag@AgCl Cubic Cage Photocatalysts Profit from Ultrafast Plasmon-Induced Electron Transfer Processes (Adv. Funct. Mater. 23/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 2902-2902	15.6	1
83	Efficient Ag@AgCl Cubic Cage Photocatalysts Profit from Ultrafast Plasmon-Induced Electron Transfer Processes. <i>Advanced Functional Materials</i> , 2013 , 23, 2932-2940	15.6	255
82	Low temperature synthesis of wurtzite zinc sulfide (ZnS) thin films by chemical spray pyrolysis. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 6763-8	3.6	51
81	Urine for plasmonic nanoparticle-based colorimetric detection of mercury ion. <i>Small</i> , 2013 , 9, 4104-11	11	96
80	Bottom-up synthesis of nanoscale conjugation-interrupted frameworks and their electrical properties. <i>Small</i> , 2013 , 9, 3218-23	11	12
79	Organic Dots with Aggregation-Induced Emission (AIE Dots) Characteristics for Dual-Color Cell Tracing. <i>Chemistry of Materials</i> , 2013 , 25, 4181-4187	9.6	108
78	Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small, 2013, 9, 1467-81	11	226
77	Clean unzipping by steam etching to synthesize graphene nanoribbons. <i>Nanotechnology</i> , 2013 , 24, 3256	60,44	15
76	Organic Nanocrystals: Atomically Flat, Large-Sized, Two-Dimensional Organic Nanocrystals (Small 7/2013). <i>Small</i> , 2013 , 9, 962-962	11	3
75	Reciprocal Response of Human Oral Epithelial Cells to Internalized Silica Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 784-793	3.1	29
74	🗓 igantische Energiegewinnung mittels Nanofluidik. Angewandte Chemie, 2013, 125, 7792-7794	3.6	O
73	Synthesis of fivefold stellate polyhedral gold nanoparticles with {110}-facets via a seed-mediated growth method. <i>Small</i> , 2013 , 9, 705-10	11	41
72	Facile growth of a single-crystal pattern: a case study of HKUST-1. <i>Chemical Communications</i> , 2012 , 48, 11901-3	5.8	10

71	Novel siliconflickel cone arrays for high performance LIB anodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 20870		24
70	Colorimetric chemodosimeter based on diazonium-gold-nanoparticle complexes for sulfite ion detection in solution. <i>Small</i> , 2012 , 8, 3412-6	11	49
69	DNA-directed growth of FePO4 nanostructures on carbon nanotubes to achieve nearly 100% theoretical capacity for lithium-ion batteries. <i>Energy and Environmental Science</i> , 2012 , 5, 6919	35.4	65
68	A Bkeleton/skinßtrategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. <i>Energy and Environmental Science</i> , 2012 , 5, 8726	35.4	282
67	Free-standing one-dimensional plasmonic nanostructures. <i>Nanoscale</i> , 2012 , 4, 66-75	7.7	43
66	A facile approach to nanoarchitectured three-dimensional graphene-based Li-Mn-O composite as high-power cathodes for Li-ion batteries. <i>Beilstein Journal of Nanotechnology</i> , 2012 , 3, 513-23	3	24
65	Chemical reaction on a solid surface with nanoconfined geometry. Small, 2012, 8, 333-5	11	9
64	Assembly of graphene sheets into 3D macroscopic structures. <i>Small</i> , 2012 , 8, 2458-63	11	152
63	Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors. <i>Small</i> , 2012 , 8, 3201-8	11	61
62	Single-layer MoS2 phototransistors. <i>ACS Nano</i> , 2012 , 6, 74-80	16.7	2704
61	Disc-like 7, 14-dicyano-ovalene-3,4:10,11-bis(dicarboximide) as a solution-processible n-type semiconductor for air stable field-effect transistors. <i>Chemical Science</i> , 2012 , 3, 846-850	9.4	50
60	Photo-modulable molecular transport junctions based on organometallic molecular wires. <i>Chemical Science</i> , 2012 , 3, 3113	9.4	90
59	A leavening strategy to prepare reduced graphene oxide foams. <i>Advanced Materials</i> , 2012 , 24, 4144-50	24	701
58	Making Graphene B readŪA Leavening Strategy to Prepare Reduced Graphene Oxide Foams (Adv. Mater. 30/2012). <i>Advanced Materials</i> , 2012 , 24, 4143-4143	24	3
57	Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. <i>Nature Chemistry</i> , 2012 , 4, 310-6	17.6	1549
56	ORGANIZED STRUCTURES FORMATION DRIVEN BY INTERFACIAL INSTABILITY AT THE THREE PHASE CONTACT LINE: LANGMUIR-BLODGETT PATTERNING 2012 , 157-187		
55	Ultrathin organic single crystals: fabrication, field-effect transistors and thickness dependence of charge carrier mobility. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4771		41

53	Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. <i>Nanoscale</i> , 2011 , 3, 1084-9	7.7	330
52	Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives. <i>Langmuir</i> , 2011 , 27, 1314-8	4	25
51	Assembly of graphene sheets into hierarchical structures for high-performance energy storage. <i>ACS Nano</i> , 2011 , 5, 3831-8	16.7	364
50	Flexible colorimetric detection of mercuric ion by simply mixing nanoparticles and oligopeptides. <i>Small</i> , 2011 , 7, 1407-11	11	70
49	Enhanced electrical conductivity of individual conducting polymer nanobelts. <i>Small</i> , 2011 , 7, 1949-53	11	35
48	Protein-based memristive nanodevices. <i>Small</i> , 2011 , 7, 3016-20	11	59
47	High-performance organic single-crystal field-effect transistors of indolo[3,2-b]carbazole and their potential applications in gas controlled organic memory devices. <i>Advanced Materials</i> , 2011 , 23, 5075-80, 5074	24	72
46	Organic Field-Effect Transistors: High-Performance Organic Single-Crystal Field-Effect Transistors of Indolo[3,2-b]carbazole and Their Potential Applications in Gas Controlled Organic Memory Devices (Adv. Mater. 43/2011). <i>Advanced Materials</i> , 2011 , 23, 5074-5074	24	3
45	Semiconductive, one-dimensional, self-assembled nanostructures based on oligopeptides with Etonjugated segments. <i>Chemistry - A European Journal</i> , 2011 , 17, 4746-9	4.8	34
44	Buffer-Layer-Assisted Epitaxial Growth of Perfectly Aligned Oxide Nanorod Arrays in Solution. <i>Crystal Growth and Design</i> , 2011 , 11, 4885-4891	3.5	17
43	Patterning of plasmonic nanoparticles into multiplexed one-dimensional arrays based on spatially modulated electrostatic potential. <i>ACS Nano</i> , 2011 , 5, 8288-94	16.7	61
42	Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. <i>Carbon</i> , 2011 , 49, 1787-1796	10.4	248
41	Beam pen lithography. <i>Nature Nanotechnology</i> , 2010 , 5, 637-40	28.7	147
40	Sb2Te3 Nanoparticles with Enhanced Seebeck Coefficient and Low Thermal Conductivity. <i>Chemistry of Materials</i> , 2010 , 22, 3086-3092	9.6	77
39	Free-standing bimetallic nanorings and nanoring arrays made by on-wire lithography. <i>ACS Nano</i> , 2010 , 4, 7676-82	16.7	52
38	The Evolution of Langmuir B lodgett Patterning 2010 , 317		
37	Self-limited oxidation: a route to form graphene layers from graphite by one-step heating. <i>Small</i> , 2010 , 6, 2837-41	11	13
36	Tuning the intensity of metal-enhanced fluorescence by engineering silver nanoparticle arrays. <i>Small</i> , 2010 , 6, 1038-43	11	75

(2007-2009)

35	Chemical fabrication of heterometallic nanogaps for molecular transport junctions. <i>Nano Letters</i> , 2009 , 9, 3974-9	11.5	98
34	Spectroscopic Tracking of Molecular Transport Junctions Generated by Using Click Chemistry. <i>Angewandte Chemie</i> , 2009 , 121, 5280-5283	3.6	24
33	Surprisingly Long-Range Surface-Enhanced Raman Scattering (SERS) on Au N i Multisegmented Nanowires. <i>Angewandte Chemie</i> , 2009 , 121, 4274-4276	3.6	7
32	Titelbild: Spectroscopic Tracking of Molecular Transport Junctions Generated by Using Click Chemistry (Angew. Chem. 28/2009). <i>Angewandte Chemie</i> , 2009 , 121, 5157-5157	3.6	
31	Spectroscopic tracking of molecular transport junctions generated by using click chemistry. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5178-81	16.4	100
30	Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 4210-2	16.4	79
29	Cover Picture: Spectroscopic Tracking of Molecular Transport Junctions Generated by Using Click Chemistry (Angew. Chem. Int. Ed. 28/2009). <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5055-5	50554	1
28	Generation of metal photomasks by dip-pen nanolithography. <i>Small</i> , 2009 , 5, 1850-3	11	37
27	In-wire conversion of a metal nanorod segment into an organic semiconductor. Small, 2009, 5, 1527-30	11	17
26	Complementary electrical and spectroscopic detection assays with on-wire-lithography-based nanostructures. <i>Small</i> , 2009 , 5, 2537-40	11	19
25	Electrochemical deposition of silver nanoparticle arrays with tunable density. <i>Langmuir</i> , 2009 , 25, 55-8	4	30
24	Plasmonic focusing in rod-sheath heteronanostructures. ACS Nano, 2009, 3, 87-92	16.7	48
23	Interfacial Assembly of Nanoparticles into Higher-order Patterned Structures. <i>Frontiers of Nanoscience</i> , 2009 , 1, 326-365	0.7	
22	Site-selective patterning of organic luminescent molecules via gas phase deposition. <i>Langmuir</i> , 2008 , 24, 5315-8	4	17
21	Electrically biased nanolithography with KOH-coated AFM tips. Nano Letters, 2008, 8, 1451-5	11.5	24
20	On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8166-8	16.4	94
19	Selective synthesis and self-organization at the air/water interface of long chain fluorinated unsaturated ethyl esters and alcohols. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2008 , 317, 414-420	5.1	4
18	Fabrication of gradient mesostructures by Langmuir-Blodgett rotating transfer. <i>Langmuir</i> , 2007 , 23, 225	B Q -3	30

17	Correlating dynamics and selectivity in adsorption of semiconductor nanocrystals onto a self-organized pattern. <i>Nano Letters</i> , 2007 , 7, 3483-8	11.5	14
16	Langmuir-Blodgett patterning: a bottom-up way to build mesostructures over large areas. <i>Accounts of Chemical Research</i> , 2007 , 40, 393-401	24.3	187
15	Hierarchical luminescence patterning based on multiscaled self-assembly. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9592-3	16.4	49
14	Langmuir-Blodgett patterning of phospholipid microstripes: effect of the second component. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 8039-46	3.4	38
13	Unconventional air-stable interdigitated bilayer formed by 2,3-disubstituted fatty acid methyl esters. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 19866-75	3.4	15
12	Phase behavior of 2,3-disubstituted methyl octadecanoate monolayers at the air-water interface. <i>Langmuir</i> , 2005 , 21, 3376-83	4	4
11	Influence of surfactant molecular structure on two-dimensional surfactant-DNA complexes: Langmuir balance study. <i>Journal of Colloid and Interface Science</i> , 2005 , 287, 185-90	9.3	23
10	The pH stimulated reversible loading and release of a cationic dye in a layer-by-layer assembled DNA/PAH film. <i>Journal of Colloid and Interface Science</i> , 2004 , 277, 396-403	9.3	27
9	Lateral Patterning of Luminescent CdSe Nanocrystals by Selective Dewetting from Self-Assembled Organic Templates. <i>Nano Letters</i> , 2004 , 4, 885-888	11.5	82
8	Induced chirality of binary aggregates of oppositely charged water-soluble porphyrins on DNA matrix. <i>Journal of Inorganic Biochemistry</i> , 2003 , 94, 106-13	4.2	52
7	A one-solution layer-by-layer method to fabricate ultrathin organic films. <i>Thin Solid Films</i> , 2003 , 425, 117-120	2.2	5
6	Layer-by-layer assembly of DNA-dye complex films. <i>Thin Solid Films</i> , 2002 , 409, 227-232	2.2	27
5	Assembly and Characterization of Ternary SVDNAIIMPyP Complex LangmuirBlodgett Films. <i>Langmuir</i> , 2002 , 18, 4449-4454	4	17
4	Gemini Surfactant/DNA Complex Monolayers at the AirWater Interface: Effect of Surfactant Structure on the Assembly, Stability, and Topography of Monolayers. <i>Langmuir</i> , 2002 , 18, 6222-6228	4	119
3	Perspective for removing volatile organic compounds during solar-driven water evaporation toward water production. <i>EcoMat</i> ,e12147	9.4	7
2	Advanced Dynamic Gels357-384		
1	Assemblies and composites of gold nanostructures for functional devices. <i>Aggregate</i> ,e57	22.9	0