
Xiaodong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3981591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Layer MoS ₂ Phototransistors. ACS Nano, 2012, 6, 74-80.	14.6	3,103
2	Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature Chemistry, 2012, 4, 310-316.	13.6	1,857
3	Heterogeneous visible light photocatalysis for selective organic transformations. Chemical Society Reviews, 2014, 43, 473-486.	38.1	1,286
4	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	14.6	976
5	Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews, 2015, 44, 5926-5940.	38.1	857
6	Highâ€Performance Photothermal Conversion of Narrowâ€Bandgap Ti ₂ O ₃ Nanoparticles. Advanced Materials, 2017, 29, 1603730.	21.0	766
7	A Leavening Strategy to Prepare Reduced Graphene Oxide Foams. Advanced Materials, 2012, 24, 4144-4150.	21.0	765
8	Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics. Advanced Functional Materials, 2019, 29, 1806220.	14.9	602
9	Nature-Inspired Structural Materials for Flexible Electronic Devices. Chemical Reviews, 2017, 117, 12893-12941.	47.7	578
10	Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors. Small, 2014, 10, 3625-3631.	10.0	540
11	Allâ€Solidâ€State Flexible Ultrathin Microâ€Supercapacitors Based on Graphene. Advanced Materials, 2013, 25, 4035-4042.	21.0	503
12	Highly Stretchable, Integrated Supercapacitors Based on Singleâ€Walled Carbon Nanotube Films with Continuous Reticulate Architecture. Advanced Materials, 2013, 25, 1058-1064.	21.0	496
13	Silk Fibroin for Flexible Electronic Devices. Advanced Materials, 2016, 28, 4250-4265.	21.0	466
14	Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. Journal of the American Chemical Society, 2018, 140, 5280-5289.	13.7	464
15	A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2019, 2, 361-368.	26.0	421
16	Nanostructured Graphene Composite Papers for Highly Flexible and Foldable Supercapacitors. Advanced Materials, 2014, 26, 4855-4862.	21.0	398
17	Mechanical Forceâ€Ðriven Growth of Elongated Bending TiO ₂ â€based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries. Advanced Materials, 2014, 26, 6111-6118.	21.0	386
18	Assembly of Graphene Sheets into Hierarchical Structures for High-Performance Energy Storage. ACS Nano, 2011, 5, 3831-3838.	14.6	382

#	Article	IF	CITATIONS
19	Flexible and Stretchable Devices. Advanced Materials, 2016, 28, 4177-4179.	21.0	378
20	Design of Architectures and Materials in Inâ€Plane Microâ€supercapacitors: Current Status and Future Challenges. Advanced Materials, 2017, 29, 1602802.	21.0	373
21	3D Printed Photoresponsive Devices Based on Shape Memory Composites. Advanced Materials, 2017, 29, 1701627.	21.0	370
22	Materials and structural designs of stretchable conductors. Chemical Society Reviews, 2019, 48, 2946-2966.	38.1	367
23	Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale, 2011, 3, 1084-1089.	5.6	352
24	A Mechanically and Electrically Selfâ€Healing Supercapacitor. Advanced Materials, 2014, 26, 3638-3643.	21.0	351
25	Cooperative photoredox catalysis. Chemical Society Reviews, 2016, 45, 3026-3038.	38.1	350
26	Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2018, 30, e1706589.	21.0	349
27	A "skeleton/skin―strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy and Environmental Science, 2012, 5, 8726.	30.8	312
28	An Artificial Sensory Neuron with Tactile Perceptual Learning. Advanced Materials, 2018, 30, e1801291.	21.0	309
29	Thicknessâ€Gradient Films for High Gauge Factor Stretchable Strain Sensors. Advanced Materials, 2015, 27, 6230-6237.	21.0	300
30	Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nature Electronics, 2020, 3, 563-570.	26.0	298
31	Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon, 2011, 49, 1787-1796.	10.3	275
32	Efficient Ag@AgCl Cubic Cage Photocatalysts Profit from Ultrafast Plasmonâ€Induced Electron Transfer Processes. Advanced Functional Materials, 2013, 23, 2932-2940.	14.9	270
33	Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO ₂ Nanowire Composite. Advanced Materials, 2018, 30, 1704531.	21.0	270
34	Suspended Wavy Graphene Microribbons for Highly Stretchable Microsupercapacitors. Advanced Materials, 2015, 27, 5559-5566.	21.0	268
35	Graphene-based wearable piezoresistive physical sensors. Materials Today, 2020, 36, 158-179.	14.2	262
36	Colorimetric Detection of Mercury Ions Based on Plasmonic Nanoparticles. Small, 2013, 9, 1467-1481.	10.0	255

#	Article	IF	CITATIONS
37	Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nature Communications, 2019, 10, 5384.	12.8	249
38	Enhanced Cathodic Oxygen Reduction and Power Production of Microbial Fuel Cell Based on Nobleâ€Metalâ€Free Electrocatalyst Derived from Metalâ€Organic Frameworks. Advanced Energy Materials, 2016, 6, 1501497.	19.5	241
39	A Photoresponsive Rutile TiO ₂ Heterojunction with Enhanced Electron–Hole Separation for Highâ€Performance Hydrogen Evolution. Advanced Materials, 2019, 31, e1806596.	21.0	240
40	Flexible Transparent Electronic Gas Sensors. Small, 2016, 12, 3748-3756.	10.0	234
41	Plasticizing Silk Protein for Onâ€ S kin Stretchable Electrodes. Advanced Materials, 2018, 30, e1800129.	21.0	230
42	Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for Highâ€Performance Gas Sensing. Small, 2015, 11, 5409-5415.	10.0	225
43	Visibleâ€Lightâ€Induced Photoredox Catalysis of Dyeâ€5ensitized Titanium Dioxide: Selective Aerobic Oxidation of Organic Sulfides. Angewandte Chemie - International Edition, 2016, 55, 4697-4700.	13.8	222
44	Sericin for Resistance Switching Device with Multilevel Nonvolatile Memory. Advanced Materials, 2013, 25, 5498-5503.	21.0	219
45	Highly Compressible and Allâ€Solidâ€State Supercapacitors Based on Nanostructured Composite Sponge. Advanced Materials, 2015, 27, 6002-6008.	21.0	217
46	Wetâ€Chemical Processing of Phosphorus Composite Nanosheets for Highâ€Rate and Highâ€Capacity Lithiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1502409.	19.5	211
47	Renewableâ€Jugloneâ€Based Highâ€Performance Sodiumâ€Ion Batteries. Advanced Materials, 2015, 27, 2348-2	35241.0	208
48	Surface Strain Redistribution on Structured Microfibers to Enhance Sensitivity of Fiberâ€Shaped Stretchable Strain Sensors. Advanced Materials, 2018, 30, 1704229.	21.0	208
49	Langmuir–Blodgett Patterning: A Bottom–Up Way To Build Mesostructures over Large Areas. Accounts of Chemical Research, 2007, 40, 393-401.	15.6	207
50	Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices. Nature Communications, 2019, 10, 81.	12.8	204
51	Artificial Skin Perception. Advanced Materials, 2021, 33, e2003014.	21.0	203
52	Engineering 2D Architectures toward Highâ€Performance Microâ€6upercapacitors. Advanced Materials, 2019, 31, e1802793.	21.0	202
53	Soft Thermal Sensor with Mechanical Adaptability. Advanced Materials, 2016, 28, 9175-9181.	21.0	201
54	Artificial Sensory Memory. Advanced Materials, 2020, 32, e1902434.	21.0	200

#	Article	lF	CITATIONS
55	Orthogonally modulated molecular transport junctions for resettable electronic logic gates. Nature Communications, 2014, 5, 3023.	12.8	198
56	Broadband Extrinsic Selfâ€Trapped Exciton Emission in Snâ€Doped 2D Leadâ€Halide Perovskites. Advanced Materials, 2019, 31, e1806385.	21.0	198
57	Supramolecular hydrogels for antimicrobial therapy. Chemical Society Reviews, 2018, 47, 6917-6929.	38.1	196
58	Nanoparticles Strengthen Intracellular Tension and Retard Cellular Migration. Nano Letters, 2014, 14, 83-88.	9.1	191
59	Ambient Fabrication of Largeâ€Area Graphene Films via a Synchronous Reduction and Assembly Strategy. Advanced Materials, 2013, 25, 2957-2962.	21.0	190
60	Highâ€Performance and Tailorable Pressure Sensor Based on Ultrathin Conductive Polymer Film. Small, 2014, 10, 1466-1472.	10.0	189
61	Gramâ€Positive Antimicrobial Activity of Amino Acidâ€Based Hydrogels. Advanced Materials, 2015, 27, 648-654.	21.0	188
62	Stretchable Organic Semiconductor Devices. Advanced Materials, 2016, 28, 9243-9265.	21.0	188
63	Conductive Inks Based on a Lithium Titanate Nanotube Gel for Highâ€Rate Lithiumâ€Ion Batteries with Customized Configuration. Advanced Materials, 2016, 28, 1567-1576.	21.0	178
64	Highly Efficient Phosphate Scavenger Based on Well-Dispersed La(OH) ₃ Nanorods in Polyacrylonitrile Nanofibers for Nutrient-Starvation Antibacteria. ACS Nano, 2015, 9, 9292-9302.	14.6	177
65	Calcinable Polymer Membrane with Revivability for Efficient Oilyâ€Water Remediation. Advanced Materials, 2018, 30, e1801870.	21.0	176
66	Configurable Resistive Switching between Memory and Threshold Characteristics for Proteinâ€Based Devices. Advanced Functional Materials, 2015, 25, 3825-3831.	14.9	175
67	Skinâ€Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture. Advanced Materials, 2016, 28, 1559-1566.	21.0	173
68	Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve Highâ€Rate and Longâ€Life Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 13488-13492.	13.8	172
69	Engineering Interfacial Photoâ€Induced Charge Transfer Based on Nanobamboo Array Architecture for Efficient Solarâ€toâ€Chemical Energy Conversion. Advanced Materials, 2015, 27, 2207-2214.	21.0	172
70	Highâ€Adhesion Stretchable Electrodes Based on Nanopile Interlocking. Advanced Materials, 2017, 29, 1603382.	21.0	168
71	An artificial sensory neuron with visual-haptic fusion. Nature Communications, 2020, 11, 4602.	12.8	166

Beam pen lithography. Nature Nanotechnology, 2010, 5, 637-640.

31.5 165

#	Article	IF	CITATIONS
73	A Universal Strategy to Prepare Functional Porous Graphene Hybrid Architectures. Advanced Materials, 2014, 26, 3681-3687.	21.0	164
74	High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride). Nano Energy, 2017, 37, 126-135.	16.0	164
75	Flexible Piezoelectric Nanocomposite Generators Based on Formamidinium Lead Halide Perovskite Nanoparticles. Advanced Functional Materials, 2016, 26, 7708-7716.	14.9	163
76	Assembly of Graphene Sheets into 3D Macroscopic Structures. Small, 2012, 8, 2458-2463.	10.0	158
77	Honeycombâ€Lanternâ€Inspired 3D Stretchable Supercapacitors with Enhanced Specific Areal Capacitance. Advanced Materials, 2018, 30, e1805468.	21.0	152
78	Healable, Transparent, Roomâ€Temperature Electronic Sensors Based on Carbon Nanotube Network oated Polyelectrolyte Multilayers. Small, 2015, 11, 5807-5813.	10.0	151
79	Programmable Photoâ€Electrochemical Hydrogen Evolution Based on Multiâ€Segmented CdSâ€Au Nanorod Arrays. Advanced Materials, 2014, 26, 3506-3512.	21.0	150
80	Fluoroethylene Carbonate Enabling a Robust LiFâ€rich Solid Electrolyte Interphase to Enhance the Stability of the MoS ₂ Anode for Lithiumâ€lon Storage. Angewandte Chemie - International Edition, 2018, 57, 3656-3660.	13.8	149
81	Physically Transient Resistive Switching Memory Based on Silk Protein. Small, 2016, 12, 2715-2719.	10.0	148
82	Visibleâ€Lightâ€Induced Photoredox Catalysis of Dyeâ€Sensitized Titanium Dioxide: Selective Aerobic Oxidation of Organic Sulfides. Angewandte Chemie, 2016, 128, 4775-4778.	2.0	147
83	Waterâ€Soluble Sericin Protein Enabling Stable Solid–Electrolyte Interphase for Fast Charging High Voltage Battery Electrode. Advanced Materials, 2017, 29, 1701828.	21.0	147
84	3D Macroporous Nitrogenâ€Enriched Graphitic Carbon Scaffold for Efficient Bioelectricity Generation in Microbial Fuel Cells. Advanced Energy Materials, 2017, 7, 1601364.	19.5	146
85	Waterâ€Resistant Conformal Hybrid Electrodes for Aquatic Endurable Electrocardiographic Monitoring. Advanced Materials, 2020, 32, e2001496.	21.0	146
86	Highly Stretchable Gold Nanobelts with Sinusoidal Structures for Recording Electrocorticograms. Advanced Materials, 2015, 27, 3145-3151.	21.0	145
87	Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing. Advanced Materials, 2017, 29, 1702800.	21.0	144
88	Polymeric Membranes with Selective Solutionâ€Diffusion for Intercepting Volatile Organic Compounds during Solarâ€Driven Water Remediation. Advanced Materials, 2020, 32, e2004401.	21.0	142
89	Resistive Switching Memory Devices Based on Proteins. Advanced Materials, 2015, 27, 7670-7676.	21.0	140
90	Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process. Journal of Materials Chemistry A, 2013, 1, 82-88.	10.3	138

#	Article	IF	CITATIONS
91	High-frequency and intrinsically stretchable polymer diodes. Nature, 2021, 600, 246-252.	27.8	138
92	A Synergistic Capture Strategy for Enhanced Detection and Elimination of Bacteria. Angewandte Chemie - International Edition, 2014, 53, 5837-5841.	13.8	136
93	Dielectric Polarization in Inverse Spinel‣tructured Mg ₂ TiO ₄ Coating to Suppress Oxygen Evolution of Liâ€Rich Cathode Materials. Advanced Materials, 2020, 32, e2000496.	21.0	134
94	Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chemical Engineering Journal, 2021, 414, 128781.	12.7	134
95	Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale, 2016, 8, 12073-12080.	5.6	132
96	Portable Foodâ€Freshness Prediction Platform Based on Colorimetric Barcode Combinatorics and Deep Convolutional Neural Networks. Advanced Materials, 2020, 32, e2004805.	21.0	131
97	Gemini Surfactant/DNA Complex Monolayers at the Airâ^'Water Interface:Â Effect of Surfactant Structure on the Assembly, Stability, and Topography of Monolayers. Langmuir, 2002, 18, 6222-6228.	3.5	130
98	Making Electrodes Stretchable. Small Methods, 2017, 1, 1600029.	8.6	128
99	Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over BiOI-loaded ZnO composites. Journal of Colloid and Interface Science, 2017, 494, 130-138.	9.4	127
100	3D Printing of Flexible Electronic Devices. Small Methods, 2018, 2, 1700259.	8.6	126
101	An Artificial Somatic Reflex Arc. Advanced Materials, 2020, 32, e1905399.	21.0	126
102	Biophysical Responses upon the Interaction of Nanomaterials with Cellular Interfaces. Accounts of Chemical Research, 2013, 46, 782-791.	15.6	125
103	Lowering Charge Transfer Barrier of LiMn ₂ O ₄ via Nickel Surface Doping To Enhance Li ⁺ Intercalation Kinetics at Subzero Temperatures. Journal of the American Chemical Society, 2019, 141, 14038-14042.	13.7	125
104	Threeâ€Dimensional CdS–Titanate Composite Nanomaterials for Enhanced Visibleâ€Lightâ€Driven Hydrogen Evolution. Small, 2013, 9, 996-1002.	10.0	124
105	Custom-Made Electrochemical Energy Storage Devices. ACS Energy Letters, 2019, 4, 606-614.	17.4	123
106	Understanding the Role of Nanostructures for Efficient Hydrogen Generation on Immobilized Photocatalysts. Advanced Energy Materials, 2013, 3, 1368-1380.	19.5	122
107	Materials chemistry in flexible electronics. Chemical Society Reviews, 2019, 48, 1431-1433.	38.1	122
108	A colorimetric logic gate based on free gold nanoparticles and the coordination strategy between melamine and mercury ions. Chemical Communications, 2013, 49, 4196-4198.	4.1	121

#	Article	IF	CITATIONS
109	Mechanically Interlocked Hydrogel–Elastomer Hybrids for Onâ€ S kin Electronics. Advanced Functional Materials, 2020, 30, 1909540.	14.9	120
110	Programmable Nano–Bio Interfaces for Functional Biointegrated Devices. Advanced Materials, 2017, 29, 1605529.	21.0	118
111	Healable Transparent Electronic Devices. Advanced Functional Materials, 2017, 27, 1606339.	14.9	118
112	Functional Freeâ€ S tanding Graphene Honeycomb Films. Advanced Functional Materials, 2013, 23, 2972-2978.	14.9	116
113	Organic Dots with Aggregation-Induced Emission (AIE Dots) Characteristics for Dual-Color Cell Tracing. Chemistry of Materials, 2013, 25, 4181-4187.	6.7	115
114	Ambient dissolution–recrystallization towards large-scale preparation of V2O5 nanobelts for high-energy battery applications. Nano Energy, 2016, 22, 583-593.	16.0	112
115	Nanostructured TiO ₂ â€Based Anode Materials for Highâ€Performance Rechargeable Lithiumâ€Ion Batteries. ChemNanoMat, 2016, 2, 764-775.	2.8	111
116	Adhesive Biocomposite Electrodes on Sweaty Skin for Long-Term Continuous Electrophysiological Monitoring. , 2020, 2, 478-484.		107
117	Chemical Fabrication of Heterometallic Nanogaps for Molecular Transport Junctions. Nano Letters, 2009, 9, 3974-3979.	9.1	105
118	On-Wire Lithography-Generated Molecule-Based Transport Junctions: A New Testbed for Molecular Electronics. Journal of the American Chemical Society, 2008, 130, 8166-8168.	13.7	104
119	Porous Graphene Materials for Water Remediation. Small, 2014, 10, 3434-3441.	10.0	104
120	A flexible transparent colorimetric wrist strap sensor. Nanoscale, 2017, 9, 869-874.	5.6	104
121	A silk-based sealant with tough adhesion for instant hemostasis of bleeding tissues. Nanoscale Horizons, 2019, 4, 1333-1341.	8.0	104
122	Spectroscopic Tracking of Molecular Transport Junctions Generated by Using Click Chemistry. Angewandte Chemie - International Edition, 2009, 48, 5178-5181.	13.8	102
123	Urine for Plasmonic Nanoparticleâ€Based Colorimetric Detection of Mercury Ion. Small, 2013, 9, 4104-4111.	10.0	102
124	Plasmonic Enhanced Optoelectronic Devices. Plasmonics, 2014, 9, 859-866.	3.4	100
125	Mediating Shortâ€Term Plasticity in an Artificial Memristive Synapse by the Orientation of Silica Mesopores. Advanced Materials, 2018, 30, e1706395.	21.0	100
126	Stretchable Conductive Fibers Based on a Cracking Control Strategy for Wearable Electronics. Advanced Functional Materials, 2018, 28, 1801683.	14.9	100

#	Article	IF	CITATIONS
127	Bioinspired Ionic Sensory Systems: The Successor of Electronics. Advanced Materials, 2020, 32, e2000218.	21.0	99
128	Spatially Confined Assembly of Nanoparticles. Accounts of Chemical Research, 2014, 47, 3009-3017.	15.6	98
129	Cu2ZnSn(S,Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization. Solar Energy Materials and Solar Cells, 2014, 124, 55-60.	6.2	97
130	Ultra‣ightweight Resistive Switching Memory Devices Based on Silk Fibroin. Small, 2016, 12, 3360-3365.	10.0	97
131	Highly Stable and Stretchable Conductive Films through Thermalâ€Radiationâ€Assisted Metal Encapsulation. Advanced Materials, 2019, 31, e1901360.	21.0	96
132	Direct coherent multi-ink printing of fabric supercapacitors. Science Advances, 2021, 7, .	10.3	95
133	Photo-modulable molecular transport junctions based on organometallic molecular wires. Chemical Science, 2012, 3, 3113.	7.4	94
134	Controlled Synthesis of Hollow Cu _{2â€x} Te Nanocrystals Based on the Kirkendall Effect and Their Enhanced CO Gasâ€ S ensing Properties. Small, 2013, 9, 793-799.	10.0	94
135	Selfâ€Protection of Electrochemical Storage Devices via a Thermal Reversible Sol–Gel Transition. Advanced Materials, 2015, 27, 5593-5598.	21.0	94
136	Biomechanoâ€Interactive Materials and Interfaces. Advanced Materials, 2018, 30, e1800572.	21.0	93
137	Conjugated polymer and drug co-encapsulated nanoparticles for Chemo- and Photo-thermal Combination Therapy with two-photon regulated fast drug release. Nanoscale, 2015, 7, 3067-3076.	5.6	92
138	Bioinspired Nanosucker Array for Enhancing Bioelectricity Generation in Microbial Fuel Cells. Advanced Materials, 2016, 28, 270-275.	21.0	92
139	Mechanoâ€Based Transductive Sensing for Wearable Healthcare. Small, 2018, 14, e1702933.	10.0	91
140	2D Material Chemistry: Graphdiyne-based Biochemical Sensing. Chemical Research in Chinese Universities, 2020, 36, 622-630.	2.6	91
141	Surprisingly Longâ€Range Surfaceâ€Enhanced Raman Scattering (SERS) on Au–Ni Multisegmented Nanowires. Angewandte Chemie - International Edition, 2009, 48, 4210-4212.	13.8	90
142	Identifying the Origin and Contribution of Surface Storage in TiO ₂ (B) Nanotube Electrode by In Situ Dynamic Valence State Monitoring. Advanced Materials, 2018, 30, e1802200.	21.0	90
143	A bioinspired stretchable membrane-based compliance sensor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11314-11320.	7.1	90
144	Tertiary amine mediated aerobic oxidation of sulfides into sulfoxides by visible-light photoredox catalysis on TiO ₂ . Chemical Science, 2015, 6, 5000-5005.	7.4	89

#	Article	IF	CITATIONS
145	Biomass-Derived Porous Fe ₃ C/Tungsten Carbide/Graphitic Carbon Nanocomposite for Efficient Electrocatalysis of Oxygen Reduction. ACS Applied Materials & Interfaces, 2016, 8, 32307-32316.	8.0	88
146	Reducing the Charge Carrier Transport Barrier in Functionally Layerâ€Graded Electrodes. Angewandte Chemie - International Edition, 2017, 56, 14847-14852.	13.8	88
147	Programmable Nanocarbonâ€Based Architectures for Flexible Supercapacitors. Advanced Energy Materials, 2015, 5, 1500677.	19.5	87
148	Synergistic photocatalytic aerobic oxidation of sulfides and amines on TiO ₂ under visible-light irradiation. Chemical Science, 2015, 6, 1075-1082.	7.4	87
149	Hierarchically branched Fe ₂ O ₃ @TiO ₂ nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. Nanoscale, 2016, 8, 11284-11290.	5.6	87
150	Lateral Patterning of Luminescent CdSe Nanocrystals by Selective Dewetting from Self-Assembled Organic Templates. Nano Letters, 2004, 4, 885-888.	9.1	86
151	3Dâ€Structured Stretchable Strain Sensors for Outâ€ofâ€Plane Force Detection. Advanced Materials, 2018, 30, e1707285.	21.0	86
152	A Compliant Ionic Adhesive Electrode with Ultralow Bioelectronic Impedance. Advanced Materials, 2020, 32, e2003723.	21.0	86
153	Combinatorial Nano–Bio Interfaces. ACS Nano, 2018, 12, 5078-5084.	14.6	84
154	Fusing Stretchable Sensing Technology with Machine Learning for Human–Machine Interfaces. Advanced Functional Materials, 2021, 31, 2008807.	14.9	84
155	Sb ₂ Te ₃ Nanoparticles with Enhanced Seebeck Coefficient and Low Thermal Conductivity. Chemistry of Materials, 2010, 22, 3086-3092.	6.7	83
156	Bioinspired, Microstructured Silk Fibroin Adhesives for Flexible Skin Sensors. ACS Applied Materials & Interfaces, 2020, 12, 5601-5609.	8.0	83
157	Flexible Colorimetric Detection of Mercuric Ion by Simply Mixing Nanoparticles and Oligopeptides. Small, 2011, 7, 1407-1411.	10.0	82
158	Threeâ€Dimensional Graphene Composite Macroscopic Structures for Capture of Cancer Cells. Advanced Materials Interfaces, 2014, 1, 1300043.	3.7	82
159	Mechanocombinatorially Screening Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2019, 31, e1903130.	21.0	82
160	An on-demand plant-based actuator created using conformable electrodes. Nature Electronics, 2021, 4, 134-142.	26.0	81
161	Tuning the Intensity of Metalâ€Enhanced Fluorescence by Engineering Silver Nanoparticle Arrays. Small, 2010, 6, 1038-1043.	10.0	79
162	Highly Thermal-Wet Comfortable and Conformal Silk-Based Electrodes for On-Skin Sensors with Sweat Tolerance. ACS Nano, 2021, 15, 9955-9966.	14.6	79

#	Article	IF	CITATIONS
163	Highâ€Performance Organic Singleâ€Crystal Fieldâ€Effect Transistors of Indolo[3,2â€b]carbazole and Their Potential Applications in Gas Controlled Organic Memory Devices. Advanced Materials, 2011, 23, 5075-5080.	21.0	78
164	Thermalâ€Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices. Advanced Materials, 2018, 30, e1704347.	21.0	78
165	Thermalâ€Disrupting Interface Mitigates Intercellular Cohesion Loss for Accurate Topical Antibacterial Therapy. Advanced Materials, 2020, 32, e1907030.	21.0	75
166	An On‣kin Electrode with Antiâ€Epidermal‣urface‣ipid Function Based on a Zwitterionic Polymer Brush. Advanced Materials, 2020, 32, e2001130.	21.0	74
167	A supertough electro-tendon based on spider silk composites. Nature Communications, 2020, 11, 1332.	12.8	73
168	Optical Reading of Contaminants in Aqueous Media Based on Gold Nanoparticles. Small, 2014, 10, 3461-3479.	10.0	72
169	Flexible Integrated Electrical Cables Based on Biocomposites for Synchronous Energy Transmission and Storage. Advanced Functional Materials, 2016, 26, 3472-3479.	14.9	72
170	Alcoholâ€Mediated Resistance‣witching Behavior in Metal–Organic Frameworkâ€Based Electronic Devices. Angewandte Chemie - International Edition, 2016, 55, 8884-8888.	13.8	72
171	Enhancing the Matrix Addressing of Flexible Sensory Arrays by a Highly Nonlinear Threshold Switch. Advanced Materials, 2018, 30, e1802516.	21.0	70
172	Highâ€Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology. Advanced Electronic Materials, 2019, 5, 1900347.	5.1	70
173	Stretchable Motion Memory Devices Based on Mechanical Hybrid Materials. Advanced Materials, 2017, 29, 1701780.	21.0	68
174	Proteinâ€Based Memristive Nanodevices. Small, 2011, 7, 3016-3020.	10.0	67
175	DNA-directed growth of FePO4 nanostructures on carbon nanotubes to achieve nearly 100% theoretical capacity for lithium-ion batteries. Energy and Environmental Science, 2012, 5, 6919.	30.8	67
176	Nanomaterials Discovery and Design through Machine Learning. Small Methods, 2019, 3, 1900025.	8.6	67
177	Electron Spin Resonance Evidence for Electro-generated Hydroxyl Radicals. Environmental Science & Technology, 2020, 54, 13333-13343.	10.0	67
178	Bioengineered Tunable Memristor Based on Protein Nanocage. Small, 2014, 10, 277-283.	10.0	66
179	Bioâ€Inspired Mechanotactic Hybrids for Orchestrating Tractionâ€Mediated Epithelial Migration. Advanced Materials, 2016, 28, 3102-3110.	21.0	66
180	Electrophoretic Buildâ€Up of Alternately Multilayered Films and Micropatterns Based on Graphene Sheets and Nanoparticles and their Applications in Flexible Supercapacitors. Small, 2012, 8, 3201-3208.	10.0	65

#	Article	IF	CITATIONS
181	A Cell Apoptosis Probe Based on Fluorogen with Aggregation Induced Emission Characteristics. ACS Applied Materials & Interfaces, 2015, 7, 4875-4882.	8.0	65
182	Laser-Synthesized Rutile TiO ₂ with Abundant Oxygen Vacancies for Enhanced Solar Water Evaporation. ACS Sustainable Chemistry and Engineering, 2020, 8, 1095-1101.	6.7	65
183	Decimal Solvent-Based High-Entropy Electrolyte Enabling the Extended Survival Temperature of Lithium-Ion Batteries to â~130°C. CCS Chemistry, 2021, 3, 1245-1255.	7.8	65
184	Al ₂ O ₃ Surface Complexation for Photocatalytic Organic Transformations. Journal of the American Chemical Society, 2017, 139, 269-276.	13.7	64
185	Cyber–Physiochemical Interfaces. Advanced Materials, 2020, 32, e1905522.	21.0	64
186	Artificial Sense Technology: Emulating and Extending Biological Senses. ACS Nano, 2021, 15, 18671-18678.	14.6	64
187	Rational Design of Materials Interface for Efficient Capture of Circulating Tumor Cells. Advanced Science, 2015, 2, 1500118.	11.2	63
188	Challenges and Emerging Opportunities in Highâ€Mobility and Lowâ€Energyâ€Consumption Organic Fieldâ€Effect Transistors. Advanced Energy Materials, 2020, 10, 2000955.	19.5	63
189	Patterning of Plasmonic Nanoparticles into Multiplexed One-Dimensional Arrays Based on Spatially Modulated Electrostatic Potential. ACS Nano, 2011, 5, 8288-8294.	14.6	62
190	Approaching the Lithiation Limit of MoS ₂ While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage. Angewandte Chemie - International Edition, 2019, 58, 3521-3526.	13.8	62
191	Machine Learningâ€Reinforced Noninvasive Biosensors for Healthcare. Advanced Healthcare Materials, 2021, 10, e2100734.	7.6	62
192	Synthesis of Anisotropic Concave Gold Nanocuboids with Distinctive Plasmonic Properties. Chemistry of Materials, 2013, 25, 2470-2475.	6.7	61
193	Low temperature synthesis of wurtzite zinc sulfide (ZnS) thin films by chemical spray pyrolysis. Physical Chemistry Chemical Physics, 2013, 15, 6763.	2.8	60
194	Devising Materials Manufacturing Toward Labâ€ŧoâ€Fab Translation of Flexible Electronics. Advanced Materials, 2020, 32, e2001903.	21.0	60
195	Porous evaporators with special wettability for low-grade heat-driven water desalination. Journal of Materials Chemistry A, 2021, 9, 702-726.	10.3	60
196	Flexible Hybrid Electronics. Advanced Materials, 2020, 32, e1905590.	21.0	59
197	Visible Photoresponse of Single‣ayer Graphene Decorated with TiO ₂ Nanoparticles. Small, 2013, 9, 2076-2080.	10.0	58
198	Programmable Negative Differential Resistance Effects Based on Selfâ€Assembled Au@PPy Core–Shell Nanoparticle Arrays. Advanced Materials, 2018, 30, e1802731.	21.0	58

#	Article	IF	CITATIONS
199	Lab-on-Mask for Remote Respiratory Monitoring. , 2020, 2, 1178-1181.		58
200	Mechano-regulated metal–organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nature Communications, 2018, 9, 3813.	12.8	57
201	Induced chirality of binary aggregates of oppositely charged water-soluble porphyrins on DNA matrix. Journal of Inorganic Biochemistry, 2003, 94, 106-113.	3.5	55
202	Free-Standing Bimetallic Nanorings and Nanoring Arrays Made by On-Wire Lithography. ACS Nano, 2010, 4, 7676-7682.	14.6	55
203	Disc-like 7, 14-dicyano-ovalene-3,4:10,11-bis(dicarboximide) as a solution-processible n-type semiconductor for air stable field-effect transistors. Chemical Science, 2012, 3, 846-850.	7.4	54
204	Colorimetric Detection of Creatinine Based on Plasmonic Nanoparticles via Synergistic Coordination Chemistry. Small, 2015, 11, 4104-4110.	10.0	54
205	Colorimetric Chemodosimeter Based on Diazonium–Goldâ€Nanoparticle Complexes for Sulfite Ion Detection in Solution. Small, 2012, 8, 3412-3416.	10.0	53
206	A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks. Nanoscale, 2015, 7, 965-974.	5.6	53
207	Interfacial Lattice‧trainâ€Ðriven Generation of Oxygen Vacancies in an Aerobicâ€Annealed TiO ₂ (B) Electrode. Advanced Materials, 2019, 31, e1906156.	21.0	53
208	Bioinspired Mechanically Interlocking Structures. Small Structures, 2020, 1, 2000045.	12.0	53
209	Editable TiO ₂ Nanomaterial-Modified Paper in Situ for Highly Efficient Detection of Carcinoembryonic Antigen by Photoelectrochemical Method. ACS Applied Materials & Interfaces, 2018, 10, 14594-14601.	8.0	52
210	Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors. Accounts of Chemical Research, 2019, 52, 82-90.	15.6	52
211	Hierarchical Luminescence Patterning Based on Multiscaled Self-Assembly. Journal of the American Chemical Society, 2006, 128, 9592-9593.	13.7	51
212	Plasmonic Focusing in Rodâ^'Sheath Heteronanostructures. ACS Nano, 2009, 3, 87-92.	14.6	51
213	Atomically Flat, Large‣ized, Twoâ€Dimensional Organic Nanocrystals. Small, 2013, 9, 990-995.	10.0	51
214	Synergistic Modulation of Surface Interaction to Assemble Metal Nanoparticles into Twoâ€Dimensional Arrays with Tunable Plasmonic Properties. Small, 2014, 10, 609-616.	10.0	51
215	Towards active plasmonic response devices. Nano Research, 2015, 8, 406-417.	10.4	51
216	Bio-inspired micropatterned hydrogel to direct and deconstruct hierarchical processing of geometry-force signals by human mesenchymal stem cells during smooth muscle cell differentiation. NPG Asia Materials, 2015, 7, e199-e199.	7.9	51

#	Article	IF	CITATIONS
217	A Morphable Ionic Electrode Based on Thermogel for Nonâ€Invasive Hairy Plant Electrophysiology. Advanced Materials, 2021, 33, e2007848.	21.0	51
218	Prolonged Electron Lifetime in Ordered TiO ₂ Mesophyll Cellâ€Like Microspheres for Efficient Photocatalytic Water Reduction and Oxidation. Small, 2016, 12, 2291-2299.	10.0	50
219	Strainâ€Driven Autoâ€Detachable Patterning of Flexible Electrodes. Advanced Materials, 2022, 34, .	21.0	50
220	Ultrathin organic single crystals: fabrication, field-effect transistors and thickness dependence of charge carrier mobility. Journal of Materials Chemistry, 2011, 21, 4771.	6.7	48
221	Orthogonally Engineering Matrix Topography and Rigidity to Regulate Multicellular Morphology. Advanced Materials, 2014, 26, 5786-5793.	21.0	47
222	Conjugated Polymer Nanodots as Ultrastable Longâ€Term Trackers to Understand Mesenchymal Stem Cell Therapy in Skin Regeneration. Advanced Functional Materials, 2015, 25, 4263-4273.	14.9	47
223	Crystallization-induced red emission of a facilely synthesized biodegradable indigo derivative. Chemical Communications, 2015, 51, 3375-3378.	4.1	47
224	Synergistic Effects of Water and Oxygen Molecule Co-adsorption on (001) Surfaces of Tetragonal CH ₃ NH ₃ Pbl ₃ : A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 28448-28455.	3.1	47
225	Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures. Nature Communications, 2020, 11, 2183.	12.8	47
226	Ultraâ€robust stretchable electrode for eâ€skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic waterâ€toâ€net interaction. InformaÄnÃ-Materiály, 2022, 4, .	17.3	47
227	Artificial Neural Pathway Based on a Memristor Synapse for Optically Mediated Motion Learning. ACS Nano, 2022, 16, 9691-9700.	14.6	47
228	Free-standing one-dimensional plasmonic nanostructures. Nanoscale, 2012, 4, 66-75.	5.6	46
229	Enhanced Photoresponse of Conductive Polymer Nanowires Embedded with Au Nanoparticles. Advanced Materials, 2016, 28, 2978-2982.	21.0	45
230	Correlating the Peukert's Constant with Phase Composition of Electrode Materials in Fast Lithiation Processes. , 2019, 1, 519-525.		45
231	Tactile Chemomechanical Transduction Based on an Elastic Microstructured Array to Enhance the Sensitivity of Portable Biosensors. Advanced Materials, 2019, 31, e1803883.	21.0	45
232	Two-Dimensional Heterospectral Correlation Analysis of the Redox-Induced Conformational Transition in Cytochrome <i>c</i> Using Surface-Enhanced Raman and Infrared Absorption Spectroscopies on a Two-Layer Gold Surface. Journal of Physical Chemistry B, 2013, 117, 9606-9614.	2.6	43
233	Synthesis of Fivefold Stellate Polyhedral Gold Nanoparticles with {110}â€Facets via a Seedâ€Mediated Growth Method. Small, 2013, 9, 705-710.	10.0	43
234	Artificial interphase engineering of electrode materials to improve the overall performance of lithium-ion batteries. Nano Research, 2017, 10, 4115-4138.	10.4	43

#	Article	IF	CITATIONS
235	The Rise of Bioinspired Ionotronics. Advanced Intelligent Systems, 2019, 1, 1900073.	6.1	43
236	Deep Cycling for High apacity Liâ€ion Batteries. Advanced Materials, 2021, 33, e2004998.	21.0	43
237	A Stretchable and Transparent Electrode Based on PECylated Silk Fibroin for In Vivo Dualâ€Modal Neuralâ€Vascular Activity Probing. Advanced Materials, 2021, 33, e2100221.	21.0	43
238	Tactile Nearâ€Sensor Analogue Computing for Ultrafast Responsive Artificial Skin. Advanced Materials, 2022, 34, .	21.0	42
239	Structural Diversity of Bulky Graphene Materials. Small, 2014, 10, 2200-2214.	10.0	41
240	Nanomechanically Visualizing Drug–Cell Interaction at the Early Stage of Chemotherapy. ACS Nano, 2017, 11, 6996-7005.	14.6	41
241	Mechanically Reinforced Localized Structure Design to Stabilize Solid–Electrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO ₂ Nanotubes. Small, 2020, 16, e2002094.	10.0	41
242	Nano and Plants. ACS Nano, 2022, 16, 1681-1684.	14.6	41
243	Langmuirâ^Blodgett Patterning of Phospholipid Microstripes:  Effect of the Second Component. Journal of Physical Chemistry B, 2006, 110, 8039-8046.	2.6	40
244	Fluoroethylene Carbonate Enabling a Robust LiFâ€rich Solid Electrolyte Interphase to Enhance the Stability of the MoS ₂ Anode for Lithiumâ€lon Storage. Angewandte Chemie, 2018, 130, 3718-3722.	2.0	40
245	Bioinspired Microfluidic Device by Integrating a Porous Membrane and Heterostructured Nanoporous Particles for Biomolecule Cleaning. ACS Nano, 2019, 13, 8374-8381.	14.6	40
246	Pangolinâ€Inspired Stretchable, Microwaveâ€Invisible Metascale. Advanced Materials, 2021, 33, e2102131.	21.0	40
247	Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity. Nanoscale, 2013, 5, 12383.	5.6	39
248	Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films. Journal of Materials Chemistry A, 2015, 3, 12016-12022.	10.3	39
249	A review on recent advances in the comprehensive application of rice husk ash. Research on Chemical Intermediates, 2016, 42, 893-913.	2.7	39
250	Elastic substrates for stretchable devices. MRS Bulletin, 2017, 42, 103-107.	3.5	39
251	Haptically Quantifying Young's Modulus of Soft Materials Using a Self‣ocked Stretchable Strain Sensor. Advanced Materials, 2022, 34, e2104078.	21.0	39
252	Unraveling the Formation of Amorphous MoS ₂ Nanograins during the Electrochemical Delithiation Process. Advanced Functional Materials, 2019, 29, 1904843.	14.9	38

#	Article	IF	CITATIONS
253	Generation of Metal Photomasks by Dipâ€Pen Nanolithography. Small, 2009, 5, 1850-1853.	10.0	37
254	Electrochemical Deposition of Silver Nanoparticle Arrays with Tunable Density. Langmuir, 2009, 25, 55-58.	3.5	37
255	Enhanced Electrical Conductivity of Individual Conducting Polymer Nanobelts. Small, 2011, 7, 1949-1953.	10.0	37
256	A Figure of Merit for Fast-Charging Li-ion Battery Materials. ACS Nano, 2022, 16, 8525-8530.	14.6	37
257	Synergistic Lysosomal Activatable Polymeric Nanoprobe Encapsulating pH Sensitive Imidazole Derivative for Tumor Diagnosis. Small, 2018, 14, 1703164.	10.0	36
258	Autonomous Chemistry Enabling Environment-Adaptive Electrochemical Energy Storage Devices. CCS Chemistry, 2023, 5, 11-29.	7.8	36
259	Semiconductive, Oneâ€Dimensional, Selfâ€Assembled Nanostructures Based on Oligopeptides with π onjugated Segments. Chemistry - A European Journal, 2011, 17, 4746-4749.	3.3	35
260	A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics. Advanced Materials, 2022, 34, e2101339.	21.0	35
261	Nanofluidics for Giant Power Harvesting. Angewandte Chemie - International Edition, 2013, 52, 7640-7641.	13.8	34
262	Reciprocal Response of Human Oral Epithelial Cells to Internalized Silica Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 784-793.	2.3	34
263	A highly efficient diatomic nickel electrocatalyst for CO ₂ reduction. Chemical Communications, 2020, 56, 8798-8801.	4.1	34
264	Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. Advanced Materials, 2021, 33, e2007977.	21.0	34
265	Hierarchical protonated titanate nanostructures for lithium-ion batteries. Nanoscale, 2011, 3, 4074.	5.6	33
266	Storing electricity as chemical energy: beyond traditional electrochemistry and double-layer compression. Energy and Environmental Science, 2018, 11, 3069-3074.	30.8	33
267	Correlating the Surface Basicity of Metal Oxides with Photocatalytic Hydroxylation of Boronic Acids to Alcohols. Angewandte Chemie - International Edition, 2018, 57, 9780-9784.	13.8	33
268	Oxygen-vacancies-engaged efficient carrier utilization for the photocatalytic coupling reaction. Journal of Catalysis, 2019, 373, 116-125.	6.2	33
269	Orientational Coupling Locally Orchestrates a Cell Migration Pattern for Reâ€Epithelialization. Advanced Materials, 2017, 29, 1700145.	21.0	33
270	Fabrication of Gradient Mesostructures by Langmuirâ´'Blodgett Rotating Transfer. Langmuir, 2007, 23, 2280-2283.	3.5	32

#	Article	IF	CITATIONS
271	Stimuliâ€Responsive Supramolecular Interfaces for Controllable Bioelectrocatalysis. ChemElectroChem, 2014, 1, 1602-1612.	3.4	32
272	Thin-film organic semiconductor devices: from flexibility to ultraflexibility. Science China Materials, 2016, 59, 589-608.	6.3	32
273	Probing the toxicity mechanism of multiwalled carbon nanotubes on bacteria. Environmental Science and Pollution Research, 2018, 25, 5003-5012.	5.3	32
274	Proactively modulating mechanical behaviors of materials at multiscale for mechano-adaptable devices. Chemical Society Reviews, 2019, 48, 1434-1447.	38.1	32
275	Polymeric Nonviral Gene Delivery Systems for Cancer Immunotherapy. Advanced Therapeutics, 2020, 3, 1900213.	3.2	30
276	Layer-by-layer assembly of DNA-dye complex films. Thin Solid Films, 2002, 409, 227-232.	1.8	29
277	The pH stimulated reversible loading and release of a cationic dye in aÂlayer-by-layer assembled DNA/PAH film. Journal of Colloid and Interface Science, 2004, 277, 396-403.	9.4	29
278	Effect of Intermolecular Dipoleâ^'Dipole Interactions on Interfacial Supramolecular Structures of <i>C</i> ₃ -Symmetric Hexa- <i>peri</i> -hexabenzocoronene Derivatives. Langmuir, 2011, 27, 1314-1318.	3.5	29
279	Investigation of electron transfer from isolated spinach thylakoids to indium tin oxide. RSC Advances, 2014, 4, 48815-48820.	3.6	29
280	A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries. Beilstein Journal of Nanotechnology, 2012, 3, 513-523.	2.8	28
281	Role of Cytoskeletal Tension in the Induction of Cardiomyogenic Differentiation in Micropatterned Human Mesenchymal Stem Cell. Advanced Healthcare Materials, 2015, 4, 1399-1407.	7.6	28
282	Multi-responsive luminescent sensor based on three dimensional lanthanide metal–organic framework. New Journal of Chemistry, 2018, 42, 19485-19493.	2.8	28
283	Conformal electrodes for onâ€skin digitalization. SmartMat, 2021, 2, 252-262.	10.7	28
284	Achieving significantly enhanced visible-light photocatalytic efficiency using a polyelectrolyte: the composites of exfoliated titania nanosheets, graphene, and poly(diallyl-dimethyl-ammonium chloride). Nanoscale, 2015, 7, 14002-14009.	5.6	27
285	Novel silicon–nickel cone arrays for high performance LIB anodes. Journal of Materials Chemistry, 2012, 22, 20870.	6.7	26
286	Surface Complexation for Photocatalytic Organic Transformations. Bulletin of the Chemical Society of Japan, 2019, 92, 505-510.	3.2	26
287	Nanomechanical Force Mapping of Restricted Cell-To-Cell Collisions Oscillating between Contraction and Relaxation. ACS Nano, 2017, 11, 12302-12310.	14.6	25
288	A Light-Permeable Solar Evaporator with Three-Dimensional Photocatalytic Sites to Boost Volatile-Organic-Compound Rejection for Water Purification. Environmental Science & Technology, 2022, 56, 9797-9805.	10.0	25

#	Article	IF	CITATIONS
289	Electrically Biased Nanolithography with KOH-Coated AFM Tips. Nano Letters, 2008, 8, 1451-1455.	9.1	24
290	Optoelectronics of Organic Nanofibers Formed by Coâ€Assembly of Porphyrin and Perylenediimide. Small, 2014, 10, 2776-2781.	10.0	24
291	Chemically tunable photoresponse of ultrathin polypyrrole. Nanoscale, 2017, 9, 7760-7764.	5.6	24
292	Metalâ€Ion Oligomerization Inside Electrified Carbon Micropores and its Effect on Capacitive Charge Storage. Advanced Materials, 2022, 34, e2107439.	21.0	24
293	Influence of surfactant molecular structure on two-dimensional surfactant–DNA complexes: Langmuir balance study. Journal of Colloid and Interface Science, 2005, 287, 185-190.	9.4	23
294	Gold Nanotip Array for Ultrasensitive Electrochemical Sensing and Spectroscopic Monitoring. Small, 2013, 9, 2260-2265.	10.0	23
295	Reducing the Charge Carrier Transport Barrier in Functionally Layerâ€Graded Electrodes. Angewandte Chemie, 2017, 129, 15043-15048.	2.0	23
296	Hollow black TiAlO _x nanocomposites for solar thermal desalination. Nanoscale, 2019, 11, 9958-9968.	5.6	23
297	A Carbon Flower Based Flexible Pressure Sensor Made from Largeâ€Area Coating. Advanced Materials Interfaces, 2020, 7, 2000875.	3.7	23
298	Hydrogels for Artificial Vitreous: From Prolonged Substitution to Elicited Regeneration. , 2019, 1, 285-289.		22
299	Perspective for removing volatile organic compounds during <scp>solarâ€driven</scp> water evaporation toward water production. EcoMat, 2021, 3, e12147.	11.9	22
300	Dependence of Plasmonic Properties on Electron Densities for Various Coupled Au Nanostructures. Journal of Physical Chemistry C, 2014, 118, 27531-27538.	3.1	21
301	Complementary Electrical and Spectroscopic Detection Assays with Onâ€Wireâ€Lithographyâ€Based Nanostructures. Small, 2009, 5, 2537-2540.	10.0	20
302	Graphene Carrier for Magnetoâ€Controllable Bioelectrocatalysis. Small, 2014, 10, 647-652.	10.0	20
303	Alcoholâ€Mediated Resistanceâ€Switching Behavior in Metal–Organic Frameworkâ€Based Electronic Devices. Angewandte Chemie, 2016, 128, 9030-9034.	2.0	19
304	Tough hydrogel module towards an implantable remote and controlled release device. Biomaterials Science, 2020, 8, 960-972.	5.4	19
305	Mechanically Durable Memristor Arrays Based on a Discrete Structure Design. Advanced Materials, 2022, 34, e2106212.	21.0	19
306	Site-Selective Patterning of Organic Luminescent Molecules via Gas Phase Deposition. Langmuir, 2008, 24, 5315-5318.	3.5	18

#	Article	IF	CITATIONS
307	Three layer-structured cadmium coordination polymers based on flexible 5-(4-pyridyl)-methoxylisophthalic acid: rapid synthesis and luminescence sensing. CrystEngComm, 2019, 21, 1001-1008.	2.6	18
308	Approaching the Lithiation Limit of MoS ₂ While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage. Angewandte Chemie, 2019, 131, 3559-3564.	2.0	18
309	Assembly and Characterization of Ternary SVâ^'DNAâ^'TMPyP Complex Langmuirâ^'Blodgett Films. Langmuir, 2002, 18, 4449-4454.	3.5	17
310	Inâ€Wire Conversion of a Metal Nanorod Segment into an Organic Semiconductor. Small, 2009, 5, 1527-1530.	10.0	17
311	Buffer-Layer-Assisted Epitaxial Growth of Perfectly Aligned Oxide Nanorod Arrays in Solution. Crystal Growth and Design, 2011, 11, 4885-4891.	3.0	17
312	Clean unzipping by steam etching to synthesize graphene nanoribbons. Nanotechnology, 2013, 24, 325604.	2.6	17
313	Single-crystalline rutile TiO2 nano-flower hierarchical structures for enhanced photocatalytic selective oxidation from amine to imine. RSC Advances, 2015, 5, 103895-103900.	3.6	17
314	Photoacoustic induced surface acoustic wave sensor for concurrent opto-mechanical microfluidic sensing of dyes and plasmonic nanoparticles. RSC Advances, 2016, 6, 50238-50244.	3.6	17
315	Enhanced electrochemical decontamination and water permeation of titanium suboxide reactive electrochemical membrane based on sonoelectrochemistry. Ultrasonics Sonochemistry, 2020, 69, 105248.	8.2	17
316	Mechanical Tolerance of Cascade Bioreactions via Adaptive Curvature Engineering for Epidermal Bioelectronics. Advanced Materials, 2020, 32, e2000991.	21.0	17
317	Three-Dimensional, Submicron Porous Electrode with a Density Gradient to Enhance Charge Carrier Transport. ACS Nano, 2022, 16, 9762-9771.	14.6	17
318	Unconventional Air-Stable Interdigitated Bilayer Formed by 2,3-Disubstituted Fatty Acid Methyl Esters. Journal of Physical Chemistry B, 2005, 109, 19866-19875.	2.6	16
319	Preparation of Rice Husk-Based C/SiO2 Composites and Their Performance as Anode Materials in Lithium Ion Batteries. Journal of Electronic Materials, 2020, 49, 1081-1089.	2.2	16
320	Correlating Dynamics and Selectivity in Adsorption of Semiconductor Nanocrystals onto a Self-Organized Pattern. Nano Letters, 2007, 7, 3483-3488.	9.1	15
321	Hybrid multi-walled carbon nanotubes-alginate-polysulfone beads for adsorption of bisphenol-A from aqueous solution. Desalination and Water Treatment, 2015, 54, 1167-1183.	1.0	15
322	Synthesis, structure and magnetic properties of Fe3N nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 15701-15707.	2.2	15
323	CoFe ₂ O ₄ Nanocrystals Mediated Crystallization Strategy for Magnetic Functioned ZSMâ€5 Catalysts. Advanced Functional Materials, 2018, 28, 1802088.	14.9	15
324	Sliding Cyclodextrin Molecules along Polymer Chains to Enhance the Stretchability of Conductive Composites. Small, 2022, 18, e2200533.	10.0	15

#	Article	IF	CITATIONS
325	Bottomâ€up Synthesis of Nanoscale Conjugationâ€Interrupted Frameworks and Their Electrical Properties. Small, 2013, 9, 3218-3223.	10.0	14
326	Highly Sensitive Electroâ€Plasmonic Switches Based on Fivefold Stellate Polyhedral Gold Nanoparticles. Small, 2015, 11, 5395-5401.	10.0	14
327	Photothermal Janus Anode with Photosynthesisâ€&hielding Effect for Activating Lowâ€Temperature Biological Wastewater Treatment. Advanced Functional Materials, 2020, 30, 1909432.	14.9	14
328	Selfâ€Limited Oxidation: A Route to Form Graphene Layers from Graphite by Oneâ€Step Heating. Small, 2010, 6, 2837-2841.	10.0	13
329	An efficient solvent-free synthesis of isoxazolyl-1,4-dihydropyridines on solid support SiO2 under microwave irradiation. Monatshefte Für Chemie, 2016, 147, 1605-1614.	1.8	13
330	Bioâ€Inspired Plasmonic Photocatalysts. Small Methods, 2019, 3, 1800295.	8.6	13
331	Engineering subcellular-patterned biointerfaces to regulate the surface wetting of multicellular spheroids. Nano Research, 2018, 11, 5704-5715.	10.4	13
332	Highly specific differentiation of MSCs into neurons directed by local electrical stimuli triggered wirelessly by electromagnetic induction nanogenerator. Nano Energy, 2022, 100, 107483.	16.0	13
333	Cesium Oleate Passivation for Stable Perovskite Photovoltaics. ACS Applied Materials & amp; Interfaces, 2019, 11, 27882-27889.	8.0	12
334	Differential Homeostasis of Sessile and Pendant Epithelium Reconstituted in a 3Dâ€Printed "GeminiChip― Advanced Materials, 2019, 31, e1900514.	21.0	12
335	Actin-ring segment switching drives nonadhesive gap closure. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33263-33271.	7.1	12
336	Carbon dots@metal–organic frameworks as dual-functional fluorescent sensors for Fe ³⁺ ions and nitro explosives. CrystEngComm, 2021, 23, 4038-4049.	2.6	12
337	Spatiotemporal Oscillation in Confined Epithelial Motion upon Fluid-to-Solid Transition. ACS Nano, 2021, 15, 7618-7627.	14.6	12
338	Hygroscopic Chemistry Enables Fireâ€Tolerant Supercapacitors with a Selfâ€Healable "Soluteâ€inâ€Air― Electrolyte. Advanced Materials, 2022, 34, e2109857.	21.0	12
339	Calcium-alginate/carbon nanotubes/TiO2 composite beads for removal of bisphenol A. Water Science and Technology, 2016, 74, 1585-1593.	2.5	11
340	Emerging intraoral biosensors. Journal of Materials Chemistry B, 2020, 8, 3341-3356.	5.8	11
341	A Bioinspired Adhesiveâ€Integratedâ€Agent Strategy for Constructing Robust Gasâ€5ensing Arrays. Advanced Materials, 2021, 33, e2106067.	21.0	11
342	Facile growth of a single-crystal pattern: a case study of HKUST-1. Chemical Communications, 2012, 48, 11901.	4.1	10

#	Article	IF	CITATIONS
343	Chemical Reaction on a Solid Surface with Nanoconfined Geometry. Small, 2012, 8, 333-335.	10.0	10
344	Synthesis of Highly Sensitive Fluorescent Probe Based on Tetrasubstituted Imidazole and Its Application for Selective Detection of Ag+ Ion in Aqueous Media. Chemical Research in Chinese Universities, 2018, 34, 369-374.	2.6	10
345	Assemblies and composites of gold nanostructures for functional devices. Aggregate, 2022, 3, e57.	9.9	10
346	Nanotechnology with Soft Matter: From Structures to Functions. Small, 2011, 7, 1275-1277.	10.0	9
347	Electrode Materials: Interfacial Latticeâ€Strainâ€Driven Generation of Oxygen Vacancies in an Aerobicâ€Annealed TiO ₂ (B) Electrode (Adv. Mater. 52/2019). Advanced Materials, 2019, 31, 1970367.	21.0	9
348	Nanomaterials for Energy and Water Management. Small, 2014, 10, 3432-3433.	10.0	8
349	3D lanthanide metal–organic frameworks constructed from lanthanide formate skeletons and 3,5-bis(4′-carboxy-phenyl)-1,2,4-triazole connectors: synthesis, structure and luminescence. RSC Advances, 2015, 5, 106107-106112.	3.6	8
350	Use of Bamboo Powder Waste for Removal of Bisphenol A in Aqueous Solution. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	8
351	Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry. Nanoscale, 2016, 8, 10669-10676.	5.6	8
352	Correlating the Surface Basicity of Metal Oxides with Photocatalytic Hydroxylation of Boronic Acids to Alcohols. Angewandte Chemie, 2018, 130, 9928-9932.	2.0	8
353	Highly Elastic Binders Incorporated with Helical Molecules to Improve the Electrochemical Stability of Black Phosphorous Anodes for Sodiumâ€lon Batteries. Batteries and Supercaps, 2020, 3, 101-107.	4.7	8
354	Programmable Materials. Advanced Materials, 2021, 33, e2107344.	21.0	8
355	A one-solution layer-by-layer method to fabricate ultrathin organic films. Thin Solid Films, 2003, 425, 117-120.	1.8	7
356	Metal-sulfide-decorated ZnO/Si nano-heterostructure arrays with enhanced photoelectrochemical performance. Materials Research Bulletin, 2017, 96, 503-508.	5.2	7
357	Synthesis and Dewatering Properties of Cellulose Derivative-Grafting DMC Amphoteric Biodegradable Flocculants. Journal of Polymers and the Environment, 2021, 29, 565-575.	5.0	7
358	Strainâ€Enabled Phase Transition of Periodic Metasurfaces. Advanced Materials, 2022, 34, e2102560.	21.0	7
359	Nanotubes: Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries (Adv. Mater. 35/2014). Advanced Materials, 2014, 26, 6046-6046.	21.0	6
360	Supercapacitors: A Mechanically and Electrically Self-Healing Supercapacitor (Adv. Mater. 22/2014). Advanced Materials, 2014, 26, 3637-3637.	21.0	6

#	Article	IF	CITATIONS
361	Precursor non-stoichiometry to enable improved CH ₃ NH ₃ PbBr ₃ nanocrystal LED performance. Physical Chemistry Chemical Physics, 2018, 20, 5918-5925.	2.8	6
362	A Novel Flexible Sensor for Muscle Shape Change Monitoring in Limb Motion Recognition. , 2018, 2018, 4665-4668.		6
363	A New Tetrasubstituted Imidazole Based Difunctional Probe for UV-spectrophotometric and Fluorometric Detecting of Fe3+ Ion in Aqueous Solution. Chemical Research in Chinese Universities, 2019, 35, 200-208.	2.6	6
364	A New Chapter of ACS Nano: Strengthening the Impact with a Global Engagement. ACS Nano, 2022, 16, 1-2.	14.6	6
365	Flexible Supercapacitors – Development of Bendable Carbon Architectures. ACS Symposium Series, 2013, , 101-141.	0.5	5
366	AlN with Strong Blue Emission Synthesized Through a Solventless Route. Nano, 2016, 11, 1650016.	1.0	5
367	Synthesis, Structure, and Magnetic Properties of Bâ€Doped Fe 3 N@C Magnetic Nanomaterial as Catalyst for the Hydrogen Evolution Reaction. Physica Status Solidi (B): Basic Research, 2019, 256, 1900111.	1.5	5
368	Enabling the Highâ€Voltage Operation of Layered Ternary Oxide Cathodes via Thermally Tailored Interphase. Small Methods, 2022, 6, e2100920.	8.6	5
369	Nano for CRISPR. ACS Nano, 2022, 16, 8505-8506.	14.6	5
370	Phase Behavior of 2,3-Disubstituted Methyl Octadecanoate Monolayers at the Airâ^'Water Interface. Langmuir, 2005, 21, 3376-3383.	3.5	4
371	Selective synthesis and self-organization at the air/water interface of long chain fluorinated unsaturated ethyl esters and alcohols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 414-420.	4.7	4
372	Nanostructures: Highly Stretchable Gold Nanobelts with Sinusoidal Structures for Recording Electrocorticograms (Adv. Mater. 20/2015). Advanced Materials, 2015, 27, 3219-3219.	21.0	4
373	SEI and Interphases at Electrodes. Batteries and Supercaps, 2020, 3, 212-213.	4.7	4
374	Organic Field-Effect Transistors: High-Performance Organic Single-Crystal Field-Effect Transistors of Indolo[3,2-b]carbazole and Their Potential Applications in Gas Controlled Organic Memory Devices (Adv. Mater. 43/2011). Advanced Materials, 2011, 23, 5074-5074.	21.0	3
375	Making Graphene "Bread― A Leavening Strategy to Prepare Reduced Graphene Oxide Foams (Adv. Mater.) T	j ETQq1 1 21:0	0, 7 84314 rg
376	Organic Nanocrystals: Atomically Flat, Large‧ized, Twoâ€Đimensional Organic Nanocrystals (Small) Tj ETQq0 C	0 0 rgBT /(Dvgrlock 10 T
377	Effect of Eu, Tb codoping on the luminescent properties of multifunctional nanocomposites. RSC Advances, 2014, 4, 22792.	3.6	3
378	Artificial Skin: Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors (Small) Tj ETQq0 0 0 0	rgBT /Ove	rloçk 10 Tf 50

#	Article	IF	CITATIONS
379	Memory Arrays: Skin-Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture (Adv. Mater. 8/2016). Advanced Materials, 2016, 28, 1526-1526.	21.0	3

Biointegrated Devices: Programmable Nano–Bio Interfaces for Functional Biointegrated Devices (Adv.) Tj ETQq0 0.0 rgBT /Qverlock 10

381	The synthesis, morphology and magnetic properties of (Fe1â^'xMnx)3N nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 277-283.	2.2	3
382	Artificial Visual Electronics for Closed‣oop Sensation/Action Systems. Advanced Intelligent Systems, 2021, 3, 2100071.	6.1	3
383	Porous Graphene: Functional Freeâ€Standing Graphene Honeycomb Films (Adv. Funct. Mater. 23/2013). Advanced Functional Materials, 2013, 23, 2971-2971.	14.9	2
384	Memory Devices: Configurable Resistive Switching between Memory and Threshold Characteristics for Proteinâ€Based Devices (Adv. Funct. Mater. 25/2015). Advanced Functional Materials, 2015, 25, 3980-3980.	14.9	2
385	Synthesis, Structure and Properties Comparison of Fe ₃ N Doped with Ni, Mn and Co. ChemistrySelect, 2019, 4, 5945-5949.	1.5	2
386	Synthesis, Morphology and Magnetic Properties of Fe ₃ C/CNTs Composites by a gâ€C ₃ N ₄ Route. ChemistrySelect, 2019, 4, 13596-13600.	1.5	2
387	Synthesis, characterization and properties of poly(N-allyl-tetrasubstituted imidazole). Polymer Bulletin, 2019, 76, 5683-5699.	3.3	2
388	Powering Body Area Sensor Networks. Matter, 2020, 2, 1085-1086.	10.0	2
389	Organic Fieldâ€Effect Transistors: Challenges and Emerging Opportunities in Highâ€Mobility and Lowâ€Energyâ€Consumption Organic Fieldâ€Effect Transistors (Adv. Energy Mater. 29/2020). Advanced Energy Materials, 2020, 10, 2070126.	19.5	2
390	Nanoscience and Entrepreneurship. ACS Nano, 2022, 16, 6943-6944.	14.6	2
391	Haptically Quantifying Young's Modulus of Soft Materials Using a Self‣ocked Stretchable Strain Sensor (Adv. Mater. 25/2022). Advanced Materials, 2022, 34, .	21.0	2
392	Cover Picture: Spectroscopic Tracking of Molecular Transport Junctions Generated by Using Click Chemistry (Angew. Chem. Int. Ed. 28/2009). Angewandte Chemie - International Edition, 2009, 48, 5055-5055.	13.8	1
393	Interfacial Assembly of Nanoparticles into Higher-order Patterned Structures. Frontiers of Nanoscience, 2009, 1, 326-365.	0.6	1
394	Hollow Nanostructures: Efficient Ag@AgCl Cubic Cage Photocatalysts Profit from Ultrafast Plasmon-Induced Electron Transfer Processes (Adv. Funct. Mater. 23/2013). Advanced Functional Materials, 2013, 23, 2902-2902.	14.9	1
395	Contaminant Detection: Optical Reading of Contaminants in Aqueous Media Based on Gold Nanoparticles (Small 17/2014). Small, 2014, 10, 3426-3426.	10.0	1
396	Polymer Nanowires: Enhanced Photoresponse of Conductive Polymer Nanowires Embedded with Au Nanoparticles (Adv. Mater. 15/2016). Advanced Materials, 2016, 28, 3031-3031.	21.0	1

#	Article	IF	CITATIONS
397	Decentralized manufacturing for biomimetics through cooperation of digitization and nanomaterial design. Nanoscale, 2019, 11, 19179-19189.	5.6	1
398	Photothermal Janus Anodes: Photothermal Janus Anode with Photosynthesisâ€Shielding Effect for Activating Lowâ€Temperature Biological Wastewater Treatment (Adv. Funct. Mater. 7/2020). Advanced Functional Materials, 2020, 30, 2070045.	14.9	1
399	Structural Regulation of Myocytes in Engineered Healthy and Diseased Cardiac Models. ACS Applied Bio Materials, 2021, 4, 267-276.	4.6	1
400	Enabling the Highâ€Voltage Operation of Layered Ternary Oxide Cathodes via Thermally Tailored Interphase (Small Methods 4/2022). Small Methods, 2022, 6, .	8.6	1
401	Titelbild: Spectroscopic Tracking of Molecular Transport Junctions Generated by Using Click Chemistry (Angew. Chem. 28/2009). Angewandte Chemie, 2009, 121, 5157-5157.	2.0	0
402	ORGANIZED STRUCTURES FORMATION DRIVEN BY INTERFACIAL INSTABILITY AT THE THREE PHASE CONTACT LINE: LANGMUIR-BLODGETT PATTERNING. , 2012, , 157-187.		0
403	Rücktitelbild: Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve High-Rate and Long-Life Lithium-Ion Batteries (Angew.) Tj ETQq1 1	0 <i>2</i> . 8 4314	1 rgBT /Over
404	Bioelectrocatalysis: Graphene Carrier for Magneto-Controllable Bioelectrocatalysis (Small 4/2014). Small, 2014, 10, 646-646.	10.0	0
405	Innentitelbild: A Synergistic Capture Strategy for Enhanced Detection and Elimination of Bacteria (Angew. Chem. 23/2014). Angewandte Chemie, 2014, 126, 5822-5822.	2.0	0
406	Regenerative Medicine: Conjugated Polymer Nanodots as Ultrastable Long-Term Trackers to Understand Mesenchymal Stem Cell Therapy in Skin Regeneration (Adv. Funct. Mater. 27/2015). Advanced Functional Materials, 2015, 25, 4262-4262.	14.9	0
407	Resistive Switching: Physically Transient Resistive Switching Memory Based on Silk Protein (Small) Tj ETQq1 1 0.7	784314 rg 10.0	BT ₀ /Overloc
408	Siliconâ€Based Anode Materials: Mechanically Reinforced Localized Structure Design to Stabilize Solid–Electrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO ₂ Nanotubes (Small 30/2020). Small, 2020, 16, 2070169.	10.0	0
409	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	14.6	0