Sven Findeiss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3981400/publications.pdf Version: 2024-02-01

SVEN FINDERS

#	Article	IF	CITATIONS
1	The primary transcriptome of the major human pathogen Helicobacter pylori. Nature, 2010, 464, 250-255.	27.8	1,115
2	Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics, 2011, 12, 124.	2.6	1,091
3	Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2. Science Translational Medicine, 2020, 12, .	12.4	203
4	De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Research, 2013, 41, 2541-2551.	14.5	163
5	RNAz 2.0: improved noncoding RNA detection. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2010, , 69-79.	0.7	135
6	Barrier Trees of Degenerate Landscapes. Zeitschrift Fur Physikalische Chemie, 2002, 216, .	2.8	130
7	Predicting RNA secondary structures from sequence and probing data. Methods, 2016, 103, 86-98.	3.8	110
8	Efficient computation of RNA folding dynamics. Journal of Physics A, 2004, 37, 4731-4741.	1.6	99
9	Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Research, 2012, 40, 2020-2031.	14.5	93
10	SHAPE directed RNA folding. Bioinformatics, 2016, 32, 145-147.	4.1	91
11	Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa. Nucleic Acids Research, 2018, 46, 1470-1485.	14.5	85
12	Folding Kinetics of Large RNAs. Journal of Molecular Biology, 2008, 379, 160-173.	4.2	77
13	TSSAR: TSS annotation regime for dRNA-seq data. BMC Bioinformatics, 2014, 15, 89.	2.6	73
14	RNAZ 2.0:. , 2009, , 69-79.		68
15	Traces of post-transcriptional RNA modifications in deep sequencing data. Biological Chemistry, 2011, 392, 305-13.	2.5	54
16	BarMap: RNA folding on dynamic energy landscapes. Rna, 2010, 16, 1308-1316.	3.5	53
17	Applicability of a computational design approach for synthetic riboswitches. Nucleic Acids Research, 2017, 45, gkw1267.	14.5	52
18	Design of Artificial Riboswitches as Biosensors. Sensors, 2017, 17, 1990.	3.8	50

Sven Findeiss

#	Article	IF	CITATIONS
19	Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells. Scientific Reports, 2016, 6, 34589.	3.3	47
20	Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa. Scientific Reports, 2016, 6, 39621.	3.3	45
21	The MazF-regulon: a toolbox for the post-transcriptional stress response in <i>Escherichia coli</i> . Nucleic Acids Research, 2016, 44, 6660-6675.	14.5	45
22	Optimization of parameters for coverage of low molecular weight proteins. Analytical and Bioanalytical Chemistry, 2010, 398, 2867-2881.	3.7	43
23	NMR Structural Profiling of Transcriptional Intermediates Reveals Riboswitch Regulation by Metastable RNA Conformations. Journal of the American Chemical Society, 2017, 139, 2647-2656.	13.7	43
24	Functional RNA Structures in the 3′UTR of Tick-Borne, Insect-Specific and No-Known-Vector Flaviviruses. Viruses, 2019, 11, 298.	3.3	43
25	General and MicroRNA-Mediated mRNA Degradation Occurs on Ribosome Complexes in <i>Drosophila</i> Cells. Molecular and Cellular Biology, 2015, 35, 2309-2320.	2.3	41
26	Design criteria for synthetic riboswitches acting on transcription. RNA Biology, 2015, 12, 221-231.	3.1	41
27	Computational RNomics of Drosophilids. BMC Genomics, 2007, 8, 406.	2.8	38
28	Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics. Journal of Proteomics, 2013, 86, 27-42.	2.4	37
29	Updated Phylogeny of Chikungunya Virus Suggests Lineage-Specific RNA Architecture. Viruses, 2019, 11, 798.	3.3	32
30	ViennaNGS: A toolbox for building efficient next- generation sequencing analysis pipelines. F1000Research, 2015, 4, 50.	1.6	31
31	Harnessing Metabolic Regulation to Increase Hfq-Dependent Antibiotic Susceptibility in Pseudomonas aeruginosa. Frontiers in Microbiology, 2018, 9, 2709.	3.5	27
32	The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts. Nucleic Acids Research, 2017, 45, 7938-7949.	14.5	24
33	Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity. Genome Biology, 2016, 17, 220.	8.8	20
34	RNAblueprint: flexible multiple target nucleic acid sequence design. Bioinformatics, 2017, 33, 2850-2858.	4.1	17
35	Musashi binding elements in Zika and related Flavivirus 3′UTRs: A comparative study in silico. Scientific Reports, 2019, 9, 6911.	3.3	16
36	Distinctive Regulation of Carbapenem Susceptibility in Pseudomonas aeruginosa by Hfq. Frontiers in Microbiology, 2020, 11, 1001.	3.5	16

Sven Findeiss

#	Article	IF	CITATIONS
37	Gene Expression Profiling of Pseudomonas aeruginosa Upon Exposure to Colistin and Tobramycin. Frontiers in Microbiology, 2021, 12, 626715.	3.5	16
38	The Anaerobically Induced sRNA Pail Affects Denitrification in Pseudomonas aeruginosa PA14. Frontiers in Microbiology, 2017, 8, 2312.	3.5	14
39	In silico design of ligand triggered RNA switches. Methods, 2018, 143, 90-101.	3.8	14
40	Efficient computation of co-transcriptional RNA-ligand interaction dynamics. Methods, 2018, 143, 70-76.	3.8	13
41	Common Features in IncRNA Annotation and Classification: A Survey. Non-coding RNA, 2021, 7, 77.	2.6	13
42	The small RNA Aar in Acinetobacter baylyi: a putative regulator of amino acid metabolism. Archives of Microbiology, 2010, 192, 691-702.	2.2	12
43	Bioinformatics of prokaryotic RNAs. RNA Biology, 2014, 11, 470-483.	3.1	12
44	TERribly Difficult: Searching for Telomerase RNAs in Saccharomycetes. Genes, 2018, 9, 372.	2.4	12
45	Indications for a moonlighting function of translation factor aIF5A in the crenarchaeum Sulfolobus solfataricus. RNA Biology, 2019, 16, 675-685.	3.1	11
46	Discoveries of Exoribonuclease-Resistant Structures of Insect-Specific Flaviviruses Isolated in Zambia. Viruses, 2020, 12, 1017.	3.3	11
47	Memory-efficient RNA energy landscape exploration. Bioinformatics, 2014, 30, 2584-2591.	4.1	10
48	Evolutionary traits of Tick-borne encephalitis virus: Pervasive non-coding RNA structure conservation and molecular epidemiology. Virus Evolution, 2022, 8, .	4.9	10
49	Protein-coding structured RNAs: A computational survey of conserved RNA secondary structures overlapping coding regions in drosophilids. Biochimie, 2011, 93, 2019-2023.	2.6	9
50	Design of Transcription Regulating Riboswitches. Methods in Enzymology, 2015, 550, 1-22.	1.0	8
51	Dynamic Molecular Epidemiology Reveals Lineage-Associated Single-Nucleotide Variants That Alter RNA Structure in Chikungunya Virus. Genes, 2021, 12, 239.	2.4	7
52	Evolving methods for rational de novo design of functional RNA molecules. Methods, 2019, 161, 54-63.	3.8	6
53	Beyond Plug and Pray: Context Sensitivity and <i>in silico</i> Design of Artificial Neomycin Riboswitches. RNA Biology, 2021, 18, 457-467.	3.1	6
54	Ligand-dependent tRNA processing by a rationally designed RNase P riboswitch. Nucleic Acids Research, 2021, 49, 1784-1800.	14.5	4

SVEN FINDEISS

#		IE	CITATIONS
#	ARTICLE	IF	CITATIONS
55	An African tick flavivirus forming an independent clade exhibits unique exoribonuclease-resistant RNA structures in the genomic 3′-untranslated region. Scientific Reports, 2021, 11, 4883.	3.3	4
56	Synthetic Riboswitches for the Analysis of tRNA Processing by eukaryotic RNase P Enzymes. Rna, 2022, , rna.078814.121.	3.5	3
57	Insights into the secondary and tertiary structure of the Bovine Viral Diarrhea Virus Internal Ribosome Entry Site. RNA Biology, 2022, 19, 496-506.	3.1	3
58	RNA Design Principles for Riboswitches that Regulate RNase P-Mediated tRNA Processing. Methods in Molecular Biology, 2022, , 179-202.	0.9	1