List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3980975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Radiation Modification of Optical Characteristics of LiNbO3:Zn and LiNbO3:Mg Crystals. Crystals, 2022, 12, 600.	1.0	2
2	Growth and concentration dependences of properties of LiNbO3:Tb crystals grown in a single technological cycle. Optical Materials, 2021, 122, 111755.	1.7	4
3	Dielectric properties and electrical conductivity of LiNbO3:Zn crystals in the temperature range 310–900 К. Solid State Ionics, 2020, 345, 115178.	1.3	5
4	FEATURES OF THE DEFECT STRUCTURE AND OPTICAL PROPERTIES OF AN LiNbO3:Mg(5.05):Fe(0.009 mol%) CRYSTAL. Journal of Applied Spectroscopy, 2020, 87, 457-463.	0.3	3
5	Electrical Conductivity and Dielectric Permittivity of Directly Doped LiNbO3:Zn,Mg Crystals in the Temperature Range 450–900 K. Inorganic Materials, 2020, 56, 955-961.	0.2	2
6	Mechanisms of Variation of the Unipolarity during Thermal Processing of Heavily Doped LiNbO3:ZnO Crystals. Technical Physics, 2020, 65, 1246-1252.	0.2	1
7	Methods for Controlling the Degree of Unipolarity of Large LiNbO3 Crystals. Instruments and Experimental Techniques, 2020, 63, 383-387.	0.1	3
8	Conditions of application of LiNbO3 based piezoelectric resonators at high temperatures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126289.	0.9	10
9	Comparative Study of Real Structure of LiNbO3Â:ÂZnO Crystals Grown by Direct and Homogeneous Doping. Crystallography Reports, 2020, 65, 18-26.	0.1	2
10	Investigation of Structural and Optical Homogeneity of LiNbO3:ZnO Crystals of Different Genesis. Inorganic Materials: Applied Research, 2020, 11, 320-329.	0.1	1
11	Estimating the Degree of Unipolarity of LiNbO3 Crystals Using Static and Dynamic Piezoelectric Measurements. Inorganic Materials, 2020, 56, 1153-1158.	0.2	4
12	A Study of Electrical Characteristics of Crystals of Homogeneously Doped LiNbO3:Zn,Mg in the Temperature Range of 450–900 K. Technical Physics, 2020, 65, 1987-1993.	0.2	3
13	Electrodeposition of Tantalum Coatings on Nitinol Stents. ECS Transactions, 2020, 98, 435-441.	0.3	0
14	Investigation of the Piezoelectric Resonance in Stoichiometric LiNbO3 Crystals at High Temperatures and Conductivities. Physics of the Solid State, 2019, 61, 1218-1222.	0.2	2
15	Electropolishing of niobium coatings on spherical shape samples. Journal of Physics: Conference Series, 2019, 1281, 012081.	0.3	0
16	Defect Structure of Zinc-Doped LiNbO3 Crystals in a Wide Range of Dopant Concentrations. Inorganic Materials, 2019, 55, 698-703.	0.2	2
17	Optical Anomalies in LiNbO3:Mg Crystals. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1	0.784314 0.2	rgBT /Overlo
18	A Comparative Study of the Structure and Chemical Homogeneity of LiNbO3:Mg(~5.3 mol %) Crystals	0.2	1

Grown from Charges of Different Origins. Inorganic Materials, 2019, 55, 1132-1137.

#	Article	IF	CITATIONS
19	Threshold Effects and Anomalies in the Physical Characteristics of LiNbO3:ZnO Crystals. Inorganic Materials, 2019, 55, 600-606.	0.2	3
20	Formation of ordered defect structures in lithium niobate crystals of different chemical composition at non-equilibrium processes of different nature. Optical Materials, 2019, 90, 51-56.	1.7	2
21	Impact of a Dopant Impurity Electronic Structure on Physical Properties, Defect Structure, and Features of Lithium Niobate Doping Technology. Technical Physics, 2019, 64, 1872-1878.	0.2	7
22	Interrelation between optical and radiation resistance of lithium niobate crystals of different chemical composition. , 2019, , .		0
23	Structure and Properties of Boron-Doped LiNbO3 Single Crystals. Inorganic Materials, 2018, 54, 49-54.	0.2	16
24	Relationship between the Optical Damage Resistance and Radiation Hardness and the Influence of Threshold Effects on the Radiation Hardness of ZnO-Doped LiNbO3 Crystals. Inorganic Materials, 2018, 54, 55-59.	0.2	6
25	Effect of the Molybdenum Substrate Shape on Mo2C Coating Electrodeposition. Coatings, 2018, 8, 442.	1.2	7
26	Physicochemical and Optical Characteristics of LiNbO3 Single-Crystals Doped with Boron. Inorganic Materials: Applied Research, 2018, 9, 817-824.	0.1	7
27	Evolution of the Domain Structure of LiNbO3:ZnO Crystals during High-Temperature Annealing. Inorganic Materials, 2018, 54, 915-919.	0.2	6
28	Superconducting Niobium Coatings Deposited on Spherical Substrates in Molten Salts. Coatings, 2018, 8, 213.	1.2	14
29	Features of the Postgrowth Thermal and Electrothermal Treatment of Nominally Pure and Heavily Doped Lithium–Niobate Crystals. Bulletin of the Russian Academy of Sciences: Physics, 2018, 82, 314-316.	0.1	5
30	A comparative study of the electrical properties of reduced and unreduced LiTaO3 crystals. Inorganic Materials, 2017, 53, 576-582.	0.2	2
31	Concentration threshold effect on properties of zincâ€doped lithium niobate crystals. Journal of the American Ceramic Society, 2017, 100, 3703-3711.	1.9	24
32	Structure and optical properties of LiNbO3:ZnO (3.43–5.84 mol %) crystals. Inorganic Materials, 2017, 53, 489-495.	0.2	11
33	Thermal hysteresis of electromechanical characteristics of Y + 42° cut LiTaO3 single crystals. Inorganic Materials, 2017, 53, 708-712.	0.2	0
34	Physicochemical, dielectric, and piezoelectric properties and conductivity of LiNbO3: ZnO crystals (4.02–8.91 mol %). Technical Physics, 2017, 62, 82-89.	0.2	3
35	Specific features of growth and structure of LiNbO3 : Zn crystals near the ZnO concentration threshold of 6.76 mol %. Technical Physics, 2017, 62, 417-423.	0.2	3
36	Corrosion resistance of the substrates for the cryogenic gyroscope and electrodeposition of the superconductive niobium coatings. Journal of Physics: Conference Series, 2017, 857, 012008.	0.3	4

#	Article	IF	CITATIONS
37	Research of physicochemical properties and structure of strongly doped LiNbO3:ZnO ([ZnO] ~) Tj ETQq1 1 0.78	84314 rgB [−] 0.1	「/Qverlock 1
38	Anomalies of dielectric properties and conductivity in single domain LiNbO3:Zn crystals. Integrated Ferroelectrics, 2016, 173, 119-127.	0.3	8
39	The Choice of Substrate Material and Electrodeposition of High Purity Niobium Coatings. ECS Transactions, 2016, 75, 609-616.	0.3	3
40	Dielectric and piezoelectric properties and electrical conductivity of LiNbO3:ZnO crystals in a wide range of dopant concentrations. Inorganic Materials, 2016, 52, 1291-1296.	0.2	9
41	Growth of LiNbO3:Er Crystals and concentration dependences of their properties. Crystallography Reports, 2016, 61, 1031-1038.	0.1	6
42	Choice of the substrate material for deposition of a superconducting coating. Russian Journal of Applied Chemistry, 2016, 89, 746-752.	0.1	2
43	Effect of charge mixture preparation technology on the physicochemical and optical properties of LiNbO3:Mg crystals. Inorganic Materials: Applied Research, 2016, 7, 691-697.	0.1	5
44	Research of Concentration Conditions for Growth of Strongly Doped LiNbO3:Zn Single Crystals. Springer Proceedings in Physics, 2016, , 87-99.	0.1	14
45	Anomalous dielectric and piezoelectric properties and electrical conductivity of heavily doped LiNbO3:Zn crystals. Inorganic Materials, 2016, 52, 147-152.	0.2	13
46	Synthesis of homogeneously mg-doped lithium niobate batch and study of the effect of non-metal impurities on the properties of LiNbO3:Mg crystals. Russian Journal of Inorganic Chemistry, 2016, 61, 18-23.	0.3	6
47	Structural and Optical Homogeneity in Lithium Niobate Crystals of Low Photorefractivity. Ferroelectrics, 2015, 484, 55-61.	0.3	0
48	Integrated research of structural and optical homogeneities of the lithium niobate crystal with low photorefractive effect. Optik, 2015, 126, 1081-1089.	1.4	18
49	Anisotropic electrical conductivity and dielectric properties of LiTaO3 crystals in the temperature range 290–900 K. Inorganic Materials, 2015, 51, 685-695.	0.2	8
50	Growth of heavily doped LiNbO3〈Zn〉 crystals. Inorganic Materials, 2015, 51, 375-379.	0.2	38
51	The Effects of Admixtures on Resistance to Radiation of Lithium Niobate Crystals. Ferroelectrics, 2015, 479, 110-118.	0.3	3
52	Electrical Properties of LiTaO ₃ Single Crystals at 290–450ÂK. Ferroelectrics, 2015, 477, 47-53.	0.3	3
53	Spontaneous unipolarity and anomalies of the dielectric and piezoelectric properties and electrical conductivity of initially heavily doped polydomain LiNbO3: Zn crystals. Physics of the Solid State, 2015, 57, 1541-1546.	0.2	11
54	Complex study of the structural and optical homogeneity of lithium niobate crystals. Crystallography Reports, 2014, 59, 724-731.	0.1	3

#	Article	IF	CITATIONS
55	Optical properties of LiNbO3:Mg(5.21 mol %) and LiNbO3:Fe(0.009 mol %):Mg(5.04 mol %) crystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 116, 274-280.	0.2	9
56	The search of homogeneity of LiNbO3 crystals grown of charge with different genesis. Journal of Crystal Growth, 2014, 386, 113-118.	0.7	56
57	Structure of Lithium Niobate Crystals with Low Photorefractive Effect. Journal of Applied Spectroscopy, 2014, 81, 633-639.	0.3	4
58	The Effects of Thermo-Baric Synthesis on the Structure and Properties of the Ferroelectric Li0.125Na0.875NbO3Solid Solution. Ferroelectrics, 2014, 469, 120-129.	0.3	1
59	Structure and properties of the Li0.125Na0.875NbO3 solid solution synthesized at atmospheric and high pressures. Inorganic Materials, 2014, 50, 1131-1139.	0.2	2
60	Effect of the method used to prepare solid precursors Nb2O5:Mg on the characteristics of LiNbO3:Mg crystals produced on their basis. Russian Journal of Inorganic Chemistry, 2014, 59, 178-182.	0.3	10
61	Laser conoscopy of LiNbO3:Mg single crystals. Inorganic Materials: Applied Research, 2014, 5, 189-197.	0.1	1
62	Radiation hardness of lithium niobate nonlinear optical crystals doped with Y, Gd, and Mg. Inorganic Materials, 2013, 49, 821-825.	0.2	5
63	Synthesis of nanopowders of pentoxides Ta2y Nb2(1â~'y)O5. Russian Journal of Applied Chemistry, 2013, 86, 498-504.	0.1	1
64	Growth of large LiNbO3â@@Mg〉 crystals. Inorganic Materials, 2013, 49, 288-295.	0.2	20
65	Structure and optical homogeneity of LiNbO3〈Mg〉 crystals grown from different charges. Inorganic Materials, 2013, 49, 715-720.	0.2	30
66	Synthesis of Li x Na1 â^' x Ta y Nb1 â^' y O3 and LiTa y Nb1 â^' y O3 perovskite and pseudoilmenite solid solutions. Inorganic Materials, 2013, 49, 1048-1054.	0.2	0
67	Conoscopic Studies of Optical Homogeneity of the LiNbO3:Mg Crystals. Ferroelectrics, 2012, 436, 19-28.	0.3	8
68	Effect of high-intensity light on the micro- and nanostructuring and thermal expansion of Ta2O5 and Nb2O5 ceramics. Inorganic Materials, 2010, 46, 683-690.	0.2	3
69	FORMATION OF FRACTAL MICRO- AND NANO-STRUCTURES IN CERAMIC TANTALUM PENTOXIDE UNDER CONCENTRATED FLUX OF LIGHT AND THEIR EFFECT ON THERMAL EXPANSION. Integrated Ferroelectrics, 2009, 108, 89-97.	0.3	8
70	Properties of Li x Na1 â^' x Ta0.1Nb0.9O3 ferroelectric ceramic solid solutions. Inorganic Materials, 2009, 45, 1423-1428.	0.2	4
71	Electrochemical Behaviour and Electrorefining of Cobalt in NaCl-KCl-K ₂ TiF ₆ Melt. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 485-491.	0.7	5
72	Comparative Acoustic and Contact Studies of Elasticity of Ferroelectric Li _x Na _{1 - x} Ta _{0.1} Nb _{0.9} O ₃ Solid Solutions at Nanometer Spatial Resolution. Ferroelectrics, 2009, 378, 31-36.	0.3	1

#	Article	IF	CITATIONS
73	MICRO- AND NANO-STRUCTURES IN SINGLE CRYSTALS OF LITHIUM NIOBATE CONTAINING LANTHANIDE ADMIXTURES. Integrated Ferroelectrics, 2008, 102, 83-91.	0.3	1
74	Electrosynthesis of Tantalum Borides in Oxygen-Free and Oxygen-Containing Fluoride Melts. Russian Journal of Electrochemistry, 2001, 37, 1262-1268.	0.3	1
75	Structure and Properties of Tantalum Borides Obtained by Molten Salt Electrolysis. Journal of Materials Processings and Manufacturing Science, 1998, 7, 85-90.	0.1	1