
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3980875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein arginine N-methyltransferase 5 in colorectal carcinoma: Insights into mechanisms of pathogenesis and therapeutic strategies. Biomedicine and Pharmacotherapy, 2022, 145, 112368.	5.6	9
2	MLH1 mediates cytoprotective nucleophagy to resist 5-Fluorouracil-induced cell death in colorectal carcinoma. Neoplasia, 2022, 24, 76-85.	5.3	3
3	Immune Profiling of COVID-19 in Correlation with SARS and MERS. Viruses, 2022, 14, 164.	3.3	11
4	Expression of GPR68, an Acid-Sensing Orphan G Protein-Coupled Receptor, in Breast Cancer. Frontiers in Oncology, 2022, 12, 847543.	2.8	5
5	Identifying Immunological and Clinical Predictors of COVID-19 Severity and Sequelae by Mathematical Modeling. Frontiers in Immunology, 2022, 13, 865845.	4.8	7
6	Expression Status of Proton Sensing Receptor GPR68 in Various Breast Cancer Molecular Subtypes. FASEB Journal, 2022, 36, .	0.5	0
7	Chemokines and Chemokine Receptors. , 2021, , .		1
8	Role of Peripheral Immune Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Sci, 2021, 3, 12.	3.0	14
9	COVID-19 infection and rheumatoid arthritis: mutual outburst cytokines and remedies. Current Medical Research and Opinion, 2021, 37, 929-938.	1.9	9
10	Molecular Examination of Differentially Expressed Genes in the Brains of Experimental Autoimmune Encephalomyelitis Mice Post Herceptin Treatment. Journal of Inflammation Research, 2021, Volume 14, 2601-2617.	3.5	1
11	Genetic Mutations and Non-Coding RNA-Based Epigenetic Alterations Mediating the Warburg Effect in Colorectal Carcinogenesis. Biology, 2021, 10, 847.	2.8	8
12	Chemokines and chemokine receptors during COVID-19 infection. Computational and Structural Biotechnology Journal, 2021, 19, 976-988.	4.1	148
13	Innate Lymphoid Cells and Natural Killer Cells in Bacterial Infections: Function, Dysregulation, and Therapeutic Targets. Frontiers in Cellular and Infection Microbiology, 2021, 11, 733564.	3.9	7
14	<p>Drugs for Multiple Sclerosis Activate Natural Killer Cells: Do They Protect Against COVID-19 Infection?</p> . Infection and Drug Resistance, 2020, Volume 13, 3243-3254.	2.7	20
15	<p>Targeting Chemokines and Chemokine Receptors in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis</p> . Journal of Inflammation Research, 2020, Volume 13, 619-633.	3.5	35
16	Understanding the Role of Innate Immune Cells and Identifying Genes in Breast Cancer Microenvironment. Cancers, 2020, 12, 2226.	3.7	21
17	Differentially Expressed Genes of Natural Killer Cells Can Distinguish Rheumatoid Arthritis Patients from Healthy Controls. Genes, 2020, 11, 492.	2.4	15
18	Interferon-Induced Transmembrane Protein (IFITM3) Is Upregulated Explicitly in SARS-CoV-2 Infected Lung Epithelial Cells. Frontiers in Immunology, 2020, 11, 1372.	4.8	64

#	Article	IF	CITATIONS
19	Correlation of Insulin-like Growth Factor 1 Receptor Expression With Different Molecular Subtypes of Breast Cancer in the UAE. Anticancer Research, 2020, 40, 1555-1561.	1.1	5
20	<p>Role of Chemokines and Chemokine Receptors in Rheumatoid Arthritis</p> . ImmunoTargets and Therapy, 2020, Volume 9, 43-56.	5.8	72
21	Pyroptosis: The missing puzzle among innate and adaptive immunity crosstalk. Journal of Leukocyte Biology, 2020, 108, 323-338.	3.3	44
22	<p>Rituximab Prevents the Development of Experimental Autoimmune Encephalomyelitis (EAE): Comparison with Prophylactic, Therapeutic or Combinational Regimens</p> . Journal of Inflammation Research, 2020, Volume 13, 151-164.	3.5	9
23	<p>Gasdermin D Hypermethylation Inhibits Pyroptosis And LPS-Induced IL-1β Release From NK92 Cells</p> . ImmunoTargets and Therapy, 2019, Volume 8, 29-41.	5.8	26
24	HCT-116 colorectal cancer cells secrete chemokines which induce chemoattraction and intracellular calcium mobilization in NK92 cells. Cancer Immunology, Immunotherapy, 2019, 68, 883-895.	4.2	13
25	The Beneficial and Debilitating Effects of Environmental and Microbial Toxins, Drugs, Organic Solvents and Heavy Metals on the Onset and Progression of Multiple Sclerosis. Toxins, 2019, 11, 147.	3.4	15
26	HCT116 Colorectal Cancer Cells Secrete Chemokines Which Induce The Chemotaxis and Intracellular Calcium Mobilization of NK92 Cells. Influence of Dimethyl Fumarate and Monomethyl Fumarate. FASEB Journal, 2018, 32, 667.2.	0.5	0
27	Innate Lymphoid Cells (ILCs) as Mediators of Inflammation, Release of Cytokines and Lytic Molecules. Toxins, 2017, 9, 398.	3.4	32
28	Editorial: Immunomodulatory Effects of Drugs for Treatment of Immune-Related Diseases. Frontiers in Immunology, 2017, 8, 969.	4.8	1
29	Utilization of Dimethyl Fumarate and Related Molecules for Treatment of Multiple Sclerosis, Cancer, and Other Diseases. Frontiers in Immunology, 2016, 7, 278.	4.8	63
30	Clatiramer Acetate, Dimethyl Fumarate, and Monomethyl Fumarate Upregulate the Expression of CCR10 on the Surface of Natural Killer Cells and Enhance Their Chemotaxis and Cytotoxicity. Frontiers in Immunology, 2016, 7, 437.	4.8	17
31	Monomethyl fumarate augments NK cell lysis of tumor cells through degranulation and the upregulation of NKp46 and CD107a. Cellular and Molecular Immunology, 2016, 13, 57-64.	10.5	31
32	Vitamin D3 and Monomethyl Fumarate Enhance Natural Killer Cell Lysis of Dendritic Cells and Ameliorate the Clinical Score in Mice Suffering from Experimental Autoimmune Encephalomyelitis. Toxins, 2015, 7, 4730-4744.	3.4	16
33	Oxidized Lipids and Lysophosphatidylcholine Induce the Chemotaxis, Up-Regulate the Expression of CCR9 and CXCR4 and Abrogate the Release of IL-6 in Human Monocytes. Toxins, 2014, 6, 2840-2856.	3.4	33
34	Implications of chemokines, chemokine receptors, and inflammatory lipids in atherosclerosis. Journal of Leukocyte Biology, 2014, 95, 575-585.	3.3	35
35	Multiple sclerosis and the role of immune cells. World Journal of Experimental Medicine, 2014, 4, 27.	1.7	120
36	American and British Administration Legacy in Iraq: Civilian Deaths and Development of Diseases. MOJ Immunology, 2014, 1, .	11.0	0

3

#	Article	IF	CITATIONS
37	Oxidized lipids and lysophosphatidylcholine induce the chemotaxis and intracellular calcium influx in natural killer cells. Immunobiology, 2013, 218, 875-883.	1.9	18
38	Effects of Vitamin D3, Calcipotriol and FTY720 on the Expression of Surface Molecules and Cytolytic Activities of Human Natural Killer Cells and Dendritic Cells. Toxins, 2013, 5, 1932-1947.	3.4	46
39	On The Role of Natural Killer Cells in Neurodegenerative Diseases. Toxins, 2013, 5, 363-375.	3.4	13
40	Implications of chemokine receptors and inflammatory lipids in cancer. ImmunoTargets and Therapy, 2013, 3, 9.	5.8	5
41	Effects of exercise on leukocytosis and blood hemostasis in 800 healthy young females and males. World Journal of Experimental Medicine, 2013, 3, 11.	1.7	33
42	A One Year Follow-Up Study of Natural Killer and Dendritic Cells Activities in Multiple Sclerosis Patients Receiving Glatiramer Acetate (GA). PLoS ONE, 2013, 8, e62237.	2.5	25
43	Interleukin-17 (IL-17) Expression Is Reduced during Acute Myocardial Infarction: Role on Chemokine Receptor Expression in Monocytes and Their in Vitro Chemotaxis towards Chemokines. Toxins, 2012, 4, 1427-1439.	3.4	10
44	Oxidized lipids and lysophosphatidylcholine (LPC) induce the chemotaxis and intracellular calcium influx in human natural killer (NK) cells. FASEB Journal, 2012, 26, lb219.	0.5	0
45	Expression and functional activity of chemokine receptors in glatiramer acetate–specific T cells isolated from multiple sclerosis patient receiving the drug glatiramer acetate. Human Immunology, 2011, 72, 124-134.	2.4	11
46	Identification of Human NK17/NK1 Cells. PLoS ONE, 2011, 6, e26780.	2.5	44
47	Effects of Lysophospholipids on Tumor Microenvironment. Cancer Microenvironment, 2011, 4, 393-403.	3.1	31
48	FTY720 and SEW2871 reverse the inhibitory effect of S1P on natural killer cell mediated lysis of K562 tumor cells and dendritic cells but not on cytokine release. Cancer Immunology, Immunotherapy, 2010, 59, 575-586.	4.2	34
49	Histamine modulates γδâ€T lymphocyte migration and cytotoxicity, via G _i and G _s proteinâ€coupled signalling pathways. British Journal of Pharmacology, 2010, 161, 1291-1300.	5.4	19
50	Role of Chemokines in the Biology of Natural Killer Cells. Current Topics in Microbiology and Immunology, 2010, 341, 37-58.	1.1	179
51	Oxazolone-Induced Delayed Type Hypersensitivity Reaction in the Adult Yucatan Pigs. A Useful Model for Drug Development and Validation. Toxins, 2009, 1, 25-36.	3.4	1
52	Lysophosphatidic acid inhibits the cytotoxic activity of NK cells: involvement of Gs protein-mediated signaling. International Immunology, 2009, 21, 667-677.	4.0	25
53	Splenic natural killer cell activity in two models of experimental neurodegenerative diseases. Journal of Cellular and Molecular Medicine, 2009, 13, 2693-2703.	3.6	24
54	Modulation of natural killer cell cytotoxicity and cytokine release by the drug glatiramer acetate. Cellular and Molecular Life Sciences, 2009, 66, 1446-1456.	5.4	49

#	Article	IF	CITATIONS
55	Sphingosine-1-phosphate inhibits the cytotoxic activity of NK cells via Gs protein-mediated signalling. International Journal of Oncology, 2009, 34, 287-94.	3.3	9
56	Glatiramer acetate (Copaxone) inhibits natural killer cells lysis of tumor cells but enhances their killing of autologous and allogeneic immature and mature dendritic cells FASEB Journal, 2008, 22, 465-465.	0.5	0
57	Functional Expression of H4 Histamine Receptor in Human Natural Killer Cells, Monocytes, and Dendritic Cells. Journal of Immunology, 2007, 179, 7907-7915.	0.8	102
58	IL-6 and IL-8 release is mediated via multiple signaling pathways after stimulating dendritic cells with lysophospholipids. Journal of Leukocyte Biology, 2006, 80, 287-297.	3.3	62
59	Human resting CD16-, CD16+ and IL-2-, IL-12-, IL-15- or IFN-α-activated natural killer cells differentially respond to sphingosylphosphorylcholine, lysophosphatidylcholine and platelet-activating factor. European Journal of Immunology, 2005, 35, 2699-2708.	2.9	30
60	Insights into Seven and Single Transmembrane-Spanning Domain Receptors and Their Signaling Pathways in Human Natural Killer Cells. Pharmacological Reviews, 2005, 57, 339-357.	16.0	40
61	Suppressive Effect of 1α,25-Dihydroxyvitamin D3 on Type I IFN-Mediated Monocyte Differentiation into Dendritic Cells: Impairment of Functional Activities and Chemotaxis. Journal of Immunology, 2005, 174, 270-276.	0.8	140
62	Compartmentalization of human natural killer cells. Molecular Immunology, 2005, 42, 523-529.	2.2	37
63	d-Calactosyl-β1-1′-sphingosine and d-glucosyl-β1-1′-sphingosine induce human natural killer cell apoptosis. Biochemical and Biophysical Research Communications, 2004, 320, 810-815.	2.1	16
64	Lysophospholipids and chemokines activate distinct signal transduction pathways in T helper 1 and T helper 2 cells. Cellular Signalling, 2004, 16, 991-1000.	3.6	24
65	Heptahelical Receptors for Lysolipids in Lymphocytes as Targets for Therapeutic Intervention. Drug Design Reviews Online, 2004, 1, 195-202.	0.7	1
66	Lysophosphatidic acid induces human natural killer cell chemotaxis and intracellular calcium mobilization. European Journal of Immunology, 2003, 33, 2083-2089.	2.9	44
67	G protein-coupled receptors in natural killer cells. Journal of Leukocyte Biology, 2003, 74, 16-24.	3.3	73
68	Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation. Blood, 2003, 101, 4909-4915.	1.4	85
69	Lck is required for stromal cell–derived factor 1α (CXCL12)–induced lymphoid cell chemotaxis. Blood, 2002, 99, 4318-4325.	1.4	67
70	Sphingosine 1 phosphate induces the chemotaxis of human natural killer cells. Role for heterotrimeric G proteins and phosphoinositide 3 kinases. European Journal of Immunology, 2002, 32, 1856.	2.9	64
71	Expression and regulation of chemokine receptors in human natural killer cells. Blood, 2001, 97, 367-375.	1.4	263
72	Human NK Cells Express CC Chemokine Receptors 4 and 8 and Respond to Thymus and Activation-Regulated Chemokine, Macrophage-Derived Chemokine, and I-309. Journal of Immunology, 2000, 164, 4048-4054.	0.8	134

#	Article	IF	CITATIONS
73	Intracellular signaling events at the leading edge of migrating cells. International Journal of Biochemistry and Cell Biology, 2000, 32, 931-943.	2.8	54
74	Intracellular Signalling Pathways Induced by Chemokines in Natural Killer Cells. Cellular Signalling, 1999, 11, 385-390.	3.6	26
75	Differential Utilization of Cyclic ADP-Ribose Pathway by Chemokines to Induce the Mobilization of Intracellular Calcium in NK Cells. Biochemical and Biophysical Research Communications, 1999, 262, 467-472.	2.1	20
76	MIPâ€3α, MIPâ€3β and fractalkine induce the locomotion and the mobilization of intracellular calcium, and activate the heterotrimeric G proteins in human natural killer cells. Immunology, 1998, 95, 618-624.	4.4	74
77	Elevated expression of endothelin-1 and endothelin-converting enzyme-1 in idiopathic pulmonary fibrosis: possible involvement of proinflammatory cytokines American Journal of Respiratory Cell and Molecular Biology, 1997, 16, 187-193.	2.9	159
78	Cloning, functional activities and in vivo tissue distribution of rat NKR-P1+ TCR alpha beta + cells. International Immunology, 1997, 9, 1043-1051.	4.0	11
79	Functional Coupling of NKR-P1 Receptors to Various Heterotrimeric G Proteins in Rat Interleukin-2-activated Natural Killer Cells. Journal of Biological Chemistry, 1997, 272, 31604-31608.	3.4	15
80	Role of the Heterotrimeric G Proteins in Stromal-Derived Factor-1α-Induced Natural Killer Cell Chemotaxis and Calcium Mobilization. Biochemical and Biophysical Research Communications, 1997, 236, 270-274.	2.1	45
81	Role of the Heterotrimeric G Proteins in Stromal-Derived, Factor-1α-Induced Natural Killer Cell Chemotaxis and Calcium Mobilization. Biochemical and Biophysical Research Communications, 1997, 237, 759.	2.1	0
82	Interferonâ€inducible proteinâ€10 and lymphotactin induce the chemotaxis and mobilization of intracellular calcium in natural killer cells through pertussis toxinâ€sensitive and â€insensitive heterotrimeric Gâ€proteins. FASEB Journal, 1997, 11, 765-774.	0.5	100
83	CC chemokines induce the generation of killer cells from CD56+ cells. European Journal of Immunology, 1996, 26, 315-319.	2.9	162
84	IL-8 Induces Calcium Mobilization in Interleukin-2-activated Natural Killer Cells Independently of Inositol 1,4,5 Trisphosphate. Annals of the New York Academy of Sciences, 1995, 766, 292-295.	3.8	6
85	Guanine nucleotide binding proteins mediate the chemotactic signal of transforming growth factor-β1 in rat IL-2 activated natural killer cells. International Immunology, 1993, 5, 825-832.	4.0	10
86	T560: an (H-2b × H-2a) F1 hybrid, phosphorylcholine (PC)-binding, murine B cell lymphoma that bears receptors for IgA and IgG, Presents antigen and secretes IL-4. International Immunology, 1992, 4, 107-118.	4.0	5
87	Confusion about the tissue distribution of lymphokine-activated killer (LAK) cells. Cancer Immunology, Immunotherapy, 1992, 35, 426-427.	4.2	1
88	Tumor Necrosis Factor-α Is Chemokinetic for Lymphokine-Activated Killer Cells: Regulation by Cyclic Adenosine Monophosphate. Journal of Leukocyte Biology, 1991, 49, 302-308.	3.3	20
89	Fate of intravenously administered rat lymphokine-activated killer cells labeled with different markers. Cancer Immunology, Immunotherapy, 1990, 31, 139-145.	4.2	17
90	Autophagy: A Versatile Player in the Progression of Colorectal Cancer and Drug Resistance. Frontiers in Oncology, 0, 12, .	2.8	12

6