Momoji Kubo

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3980631/publications.pdf
Version: 2024-02-01

A Computational Chemistry Study on Friction of h－MoS＜sub＞2＜／sub＞．Part I．Mechanism of Single	1.2	165

2 A Computational Chemistry Study on Friction of h－MoS＜sub＞2＜／sub＞．Part II．Friction Anisotropy． Journal of Physical Chemistry B，2010，114，15832－15838．
1.2
121
1.2
115
Journal of Physical Chemistry B，2003，107，1518－1524．
Grand canonical Monte Carlo simulation of the adsorption of CO2 on silicalite and NaZSM－5．Applied
3.1
Surface Science，1997，120，81－84．
Tribochemical Reaction Dynamics Simulation of Hydrogen on a Diamond－like Carbon Surface Based on
$5 \quad$ Tight－Binding Quantum Chemical Molecular Dynamics．Journal of Physical Chemistry C，2011，115，
1.595
22981－22986．
NH3 Adsorption on the BrÃๆnsted and Lewis Acid Sites of V2O5（010）：â€\％A Periodic Density Functional
Study．Journal of Physical Chemistry B，1999，103，4701－4706．
1.2
92
7 Diamond－like carbon coating under oleic acid lubrication：Evidence for graphene oxide formation in
superlow friction．Scientific Reports，2017，7，46394．

$8 \quad$| Tight－binding quantum chemical molecular dynamics simulation of mechano－chemical reactions |
| :--- |
| during chemicalấ＂mechanical polishing process of SiO2 surface by CeO 2 particle．Applied Surface |
| Science，2005，244，34－38． |

$9 \quad$| Effect of Tribochemical Reaction on Transfer－Film Formation by Poly（tetrafluoroethylene）．Journal of |
| :--- |
| Physical Chemistry C，2014，118，11820－11826． |

Development of a new molecular dynamics method for tribochemical reaction and its application to formation dynamics of MoS2 tribofilm．Applied Surface Science，2008，254，7618－7621．
formation dynamics of MoS2 tribofilm. Applied Surface Science, 2008, 254, 7618-7621.
3.1

71
11 Triboemission of hydrocarbon molecules from diamond－like carbon friction interface induces atomic－scale wear．Science Advances，2019，5，eaax9301．

4.7

70

Friction Reduction Mechanism of Hydrogen－and Fluorine－Terminated Diamond－Like Carbon Films

12 Investigated by Molecular Dynamics and Quantum Chemical Calculation．Journal of Physical Chemistry

1.5

67

C，2012，116，12559－12565．

> 13 Density functional theory analysis of methanation reaction of CO2 on Ru nanoparticle supported on TiO2 (101). Applied Catalysis A: General, 2014, 470, 405-411.
2.2

67

Dynamics of Hydrogen Spillover on $\mathrm{Pt} / \hat{\mathrm{I}}-\mathrm{Al} 2 \mathrm{O} 3$ Catalyst Surface：A Quantum Chemical Molecular Dynamics Study．Journal of Physical Chemistry C，2009，113，15676－15683．

Study of the Activity of Ga－ZSM－5 in the de－NOx Process by a Combination of Quantum Chemistry，
19 Periodic density-functional study on oxidation of diamond (100) surfaces. Physical Review B, 2000, 61,
11025-11033.
Theoretical Investigation on Functionalization of Alkanes by a Rhodium Complex Catalyst.
Organometallics, 2002, 21, 3703-3708.
1.1
54
Tribochemical Reaction Dynamics of Phosphoric Ester Lubricant Additive by Using a Hybrid
21 Tight-Binding Quantum Chemical Molecular Dynamics Method. Journal of Physical Chemistry B, 2006,
1.2
1.1
55
11025-11033.
110, 17507-17511.
22 Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle
1.5 System. Journal of Physical Chemistry C, 2013, 117, 9663-9672.
54
23 Molecular dynamics simulation of enhanced oxygen ion diffusion in strained yttria-stabilized
1.5 zirconia. Applied Physics Letters, 1998, 73, 1502-1504.
Chemical Reaction Mechanism of Polytetrafluoroethylene on Aluminum Surface under Friction
Condition. Journal of Physical Chemistry C, 2014, 118, 5390-5396.

> Tribochemical reactions and graphitization of diamond-like carbon against alumina give volcano-type temperature dependence of friction coefficients: A tight-binding quantum chemical molecular dynamics simulation. Carbon, 2018, 133,350-357.

Periodic density functional study on V2O5 bulk and (001) surface. Applied Surface Science, 1998, 130-132, 539-544.
3.1

49

$$
27 \quad \text { Atomic control of layer-by-layer epitaxial growth onSrTiO3(001):Molecular-dynamics simulations. }
$$

$27 \quad$ Physical Review B, 1997, 56, 13535-13542.

28 Molecular dynamics simulation of iso- and n-butane permeations through a ZSM-5 type silicalite membrane. Journal of Membrane Science, 1997, 134, 127-139.
$4.1 \quad 48$
29 Adsorption of H2O on the V2O5(010) Surface Studied by Periodic Density Functional Calculations.
Journal of Physical Chemistry B, 1999, 103, 3218-3224.
1.2 48
30 Molecular Dynamics Simulation of Friction of Hydrocarbon Thin Films. Langmuir, 1999, 15, 7816-7821.1.648Electronic structures and spectroscopic properties of dimers Cu2, Ag2, and Au2 calculated by densityElectronic structures and spectroscopic properties of dimers $\mathrm{Cu} 2, \mathrm{Ag} 2$, and Au 2 ca
functional theory. Computational and Theoretical Chemistry, 2002, 579, 221-227.1.5

Experimental and Molecular Dynamics Simulations of Tribochemical Reactions with ZDDP: ZincTight-Binding Quantum Chemical Molecular Dynamics Study on the Friction and Wear Processes of35 Diamond-Like Carbon Coatings: Effect of Tensile Stress. ACS Applied Materials \& Interfaces, 2017, 9,4.043
34396-34404.

Homoepitaxial growth mechanism of $\mathrm{ZnO}(0001)$: Molecular-dynamics simulations. Physical Review B,
2000, 61, 16187-16192.
37

Atomistic Mechanisms of Chemical Mechanical Polishing of a Cu Surface in Aqueous
$37 \quad \mathrm{H}<$ sub $>2</$ sub $>\mathrm{O}<$ sub $>2</$ sub $>$: Tight-Binding Quantum Chemical Molecular Dynamics Simulations. ACS
4.0

42
Applied Materials \& Interfaces, 2016, 8, 11830-11841.
38 On the electronic structure of the palladium monoxide and the methane adsorption: Density functional calculations. Journal of Chemical Physics, 1996, 104, 4098-4104.
1.2

40
Density functional study on the activation of methane over Pd2, PdO, and Pd2O clusters.
International Journal of Quantum Chemistry, 1997, 61, 673-682.
1.0

Quantum Chemical Molecular Dynamics Simulation of the Plasma Etching Processes. Japanese Journal of Applied Physics, 2003, 42, 1859-1864.
0.8

Transfer-Film Formation Mechanism of Polytetrafluoroethylene: A Computational Chemistry
1.5

Approach. Journal of Physical Chemistry C, 2013, 117, 10464-10472.

Tight-binding quantum chemical molecular dynamics simulations of the low friction mechanism of
fluorine-terminated diamond-like carbon films. RSC Advances, 2014, 4, 33739.

The distribution of framework aluminum atoms and extraframework exchanged cations in faujasite as
43 studied by molecular dynamics, NMR simulation, neutron diffraction simulation and computer
1.639 graphics. Microporous Materials, 1996, 7, 235-242.

44 Development of New Tight-Binding Molecular Dynamics Program to Simulate Chemical-Mechanical Polishing Processes. Japanese Journal of Applied Physics, 2002, 41, 2410-2413.
0.8

39

investigated by molecular dynamics and computer graphics. Microporous Materials, 1995, 4, 53-57.

Permeation dynamics of small molecules through silica membranes: Molecular dynamics study. AICHE
46 Journal, 1998, 44, 1335-1343.
1.8

38

Reactivity of Lattice Oxygens Present in V2O5(010):â€\% A Periodic First-Principles Investigation. Journal of
Physical Chemistry B, 1999, 103, 1263-1269.

Different support effect of $\mathrm{M} / \mathrm{ZrO} 2$ and $\mathrm{M} / \mathrm{CeO} 2(\mathrm{M}=\mathrm{Pd}$ and Pt$)$ catalysts on CO adsorption: A periodic density functional study. Catalysis Today, 2006, 111, 322-327.
2.2

38

First-principle study on reactions of diamond (100) surfaces with hydrogen and methyl radicals.
Physical Review B, 2000, 62, 16995-17003.

Combinatorial computational chemistry approach to the design of deNOx catalysts. Applied Catalysis A: General, 2000, 194-195, 183-191.
2.2

36

Deformation and Fracture Processes of a Lamellar Structure in Polyethylene at the Molecular Level
by a Coarse-Grained Molecular Dynamics Simulation. Macromolecules, 2017, 50, 3690-3702.
2.2

36

Ring Opening of Methylenecyclopropane over Lanthanocene Catalyst:â€\% A Quantum-Chemical Molecular
1.1

35
Dynamics Simulation Study. Organometallics, 2003, 22, 2181-2183.

Periodic density functional investigation of $\operatorname{Br} \tilde{A}_{n}$ nsted acidity in isomorphously substituted chabazite
and AIPO-34 molecular sieves. Microporous and Mesoporous Materials, 2004, 71, 51-56.

Proposal of a new formation mechanism for hydrogenated diamond-like carbon transfer films:
Fracture Process of Double-Network Gels by Coarse-Grained Molecular Dynamics Simulation.
Macromolecules, 2018, 51, 3075-3087.

Three-dimensional quantitative structureâ€"activity relationship (3 D-QSAR) and docking studies on
60 (benzothiazole-2-yl) acetonitrile derivatives as c-Jun N-terminal kinase-3 (JNK3) inhibitors. Bioorganic
$1.0 \quad 31$ and Medicinal Chemistry Letters, 2006, 16, 5917-5925.

61 Ionic Conductivity in lonic Liquid Nano Thin Films. ACS Nano, 2018, 12, 10509-10517.
Contrasting Roles of Water at Sliding Interfaces between Silicon-Based Materials: First-Principles
Molecular Dynamics Sliding Simulations. Journal of Physical Chemistry C, 2018, 122, 10459-10467.
Molecular Dynamics Sliding Simulations. Journal of Physical Chemistry C, 2018, 122, 10459-10467.
65 Development of tight-binding, chemical-reaction-dynamics simulator for combinatorial computational chemistry. Applied Surface Science, 2004, 223, 188-195.
3.1 28
Periodic density functional and tight-binding quantum chemical molecular dynamics study of2.2catalytic properties on $\hat{\imath}^{3}-\mathrm{Al} 2 \mathrm{O} 3$ supported Pt catalysts. Applied Catalysis A: General, 2006, 305, 64-69.Nanoscratching of multi-layer graphene by molecular dynamics simulations. Tribology International,

77	Tight-binding Molecular Dynamics Simulation of Desorbed SiO Molecule during the Oxidation of Si(111) Surface. Japanese Journal of Applied Physics, 1999, 38, 2434-2437.
78	Materials design of perovskite-based oxygen ion conductor by molecular dynamics method. Solid State lonics, 2003, 160, 93-101.
79	Interfacial properties of ZrO 2 supported precious metal catalysts: A density functional study. Applied Catalysis A: General, 2006, 305, 102-109.
80	Theoretical Study on Electronic and Electrical Properties of Nanostructural ZnO. Japanese Journal of Applied Physics, 2008, 47, 2999.

81 Self-Formed Double Tribolayers Play Collaborative Roles in Achieving Superlow Friction in an
83 Atomically mixed Fe-group nanoalloys: catalyst design for the selective electrooxidation of ethylene glycol to oxalic acid. Physical Chemistry Chemical Physics, 2015, 17, 11359-11366.

Tight-Binding Molecular Dynamics Study of Hydrogen Molecule Inside Silicon Crystal. Japanese
84 Journal of Applied Physics, 2000, 39, 2744-2747.
0.8

22

$$
\begin{aligned}
& \text { Effect of Surface Termination on Superlow Friction of Diamond Film: A Theoretical Study. Japanese } \\
& \text { Journal of Applied Physics, 2008, 47, 3032-3035. }
\end{aligned}
$$

0.8

22

Development of a Transferable ReaxFF Parameter Set for Carbon- and Silicon-Based Solid Systems. Journal of Physical Chemistry C, 2020, 124, 10007-10015.
1.5

22

Molecular dynamics simulation of traction fluid molecules under EHL condition. Thin Solid Films, 1996, 281-282, 598-601.
$0.8 \quad 21$
A theoretical study on the cyclopropane adsorption onto the copper surfaces by density functional
theory and quantum chemical molecular dynamics methods. Journal of Molecular Catalysis A, 2004 ,

Chemical reaction dynamics of PeCB and TCDD decomposition: A tight-binding quantum chemical
92 molecular dynamics study with first-principles parameterization. International Journal of Quantum

Reactive Molecular Dynamics Simulations of Wear and Tribochemical Reactions of Diamond like
94 Carbon Interfaces with Nanoscale Asperities under H2 Gas: Implications for Solid Lubricant Coatings.97 Adsorption of NH 3 , NO 2 and NO on copper-aluminate catalyst: an ab initio density functional study.Theoretical Chemistry Accounts, 2003, 109, 190-194.$0.5 \quad 20$98 Quantum Chemical Molecular Dynamics Studies on the Chemical Mechanical Polishing Process of CuSurface. Japanese Journal of Applied Physics, 2003, 42, 1897-1902.

First-Principles Molecular Dynamics Study of Silicon-Based Ceramics: Different Tribochemical
104 Reaction Mechanisms during the Running-in Period of Silicon Nitride and Silicon Carbide. Journal of
Physical Chemistry C, 2020, 124, 20079-20089.
Atom-by-Atom and Sheet-by-Sheet Chemical Mechanical Polishing of Diamond Assisted by OH Radicals: A
105 Tight-Binding Quantum Chemical Molecular Dynamics Simulation Study. ACS Applied Materials \&

111	Adsorption and dissociation of molecular hydrogen on $\mathrm{Pt} / \mathrm{CeO} 2$ catalyst in the hydrogen spillover process: A quantum chemical molecular dynamics study. Applied Surface Science, 2010, 256, 7643-7652.	3.1	18
112	Communication: Different behavior of Young's modulus and fracture strength of CeO 2 : Density functional theory calculations. Journal of Chemical Physics, 2014, 140, 121102.	1.2	18
113	Multi-nanoparticle model simulations of the porosity effect on sintering processes in Ni/YSZ and $\mathrm{Ni} / \mathrm{ScSZ}$ by the molecular dynamics method. Journal of Materials Chemistry A, 2015, 3, 21518-21527.	5.2	18
114	Coarse-grained molecular dynamics simulation of the void growth process in the block structure of semicrystalline polymers. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 055006.	0.8	18
115	Adsorption of NO on rhodium and palladium clusters: a density functional study. Applied Surface Science, 1997, 119, 318-320.	3.1	17

116 Adsorption of water vapor on the AlPO4-based catalysts and reaction mechanism for CFCs decomposition. Applied Catalysis A: General, 2004, 271, 55-60.
117 Modeling of Dye-Sensitized Solar Cells Based on TiO₂ Electrode Structure Model.Japanese Journal of Applied Physics, 2010, 49, 04DP10.$0.8 \quad 17$
Multiscale Simulation of Electro-Chemo-Mechanical Coupling Behavior of PEN Structure under SOFC
119 Structures and Dynamics of Alkali lon-exchanged ZSM-5 as Investigated by Molecular Dynamics and Computer Graphics. Chemistry Letters, 1991, 20, 2055-2058.
0.7 16
Density functional calculation on the adsorption of nitrogen oxides and water on ion exchanged 3.1 16 ZSM-5. Applied Surface Science, 1998, 130-132, 561-565.
16Possible Ferroelectricity in SnTiO3 by First-Principles Calculations. Materials Research SocietySymposia Proceedings, 2002, 748, 1.
127
128

A Theoretical Investigation on the Dynamic Behavior of Molybdenum Dithiocarbamate Molecule in the Engine Oil Phase. Tribology Online, 2008, 3, 80-85.
$0.2 \quad 16$

Experimental and Quantum Chemical Approaches to Develop Highly Selective Nanocatalysts for CO₂â€free Power Circulation. Chemical Record, 2016, 16, 2249-2259.
Layer-by-layer heteroepitaxial growth process of a BaO layer on SrTiO3(001) as investigated by
molecular dynamics. Journal of Chemical Physics, 1998, 109, 9148-9154.

$134 \quad$| Development of Electrical Conductivity Estimation Method Based on Tight-Binding Quantum Chemica |
| :--- |
| Molecular Dynamics Simulation. Japanese Journal of Applied Physics, 2006, 45, 3137-3143. |

$135 \quad$| The reason why thin-film silicon grows layer by layer in plasma-enhanced chemical vapor deposition. |
| :--- |
| Scientific Reports, 2015, 5, 9052. |

Molecular Dynamics Simulations of Chemically Disordered Ferroelectric (Ba,Sr)TiO₃ with a Semi-Empirical Effective Hamiltonian. Journal of the Physical Society of Japan, 2016, 85, 114714.
Cooperative roles of chemical reactions and mechanical friction in chemical mechanical polishing of
gallium nitride assisted by OH radicals: tight-binding quantum chemical molecular dynamics

simulations. Physical Chemistry Chemical Physics, 2021, 23, 4075-4084. \quad\begin{tabular}{l}
A Theoretical Study of Dynamic Behavior of Diphenyldisulphide Molecule on Fe Surface: Novel

138

Ultra-Accelerated Quantum Chemical Molecular Dynamics Approach. Tribology Online, 2008, 3,
$280-284$.

\end{tabular}

139 Molecular dynamics simulation of the friction between talc (001) surfaces. Applied Surface Science, 3.1 14
1997, 119, 335-340.Independent and Interdependent Atomistic Structural Features of Pd Clusters Supported on the$\mathrm{MgO}(001)$ Surface. Journal of Physical Chemistry B, 1998, 102, 795-803.1.214
Potential Energy Surface and Dynamics of Pd/MgO(001) System as Investigated by Periodic Density141 Functional Calculations and Classical Molecular Dynamics Simulations. Japanese Journal of Applied0.814Physics, 2000, 39, 4255-4260.Computational Chemistry Study on Crystal Growth of InGaN/GaN. Japanese Journal of Applied Physics,
A density functional investigation of charge transfer and structural distortions of cuprous(l)
bis-phenanthroline under photo-induced excitation. Journal of Photochemistry and Photobiology A:
Chemistry, 2006, 179, 149-155.
Development of Hybrid Tight-Binding Quantum Chemical Molecular Dynamics Method and Its
148 Application to Boron Implantation into Preamorphized Silicon Substrate. Japanese Journal of Applied

 Physics, 2006, 45, 2970-2974.
 149 Multi-scale theoretical study of support effect on sintering dynamics of Pt. Surface Science, 2009,0.814
150 Influence of nanometer scale film structure of ZDDP tribofilm on Its mechanical properties: A computational chemistry study. Applied Surface Science, 2009, 256, 976-979.$3.1 \quad 14$
151 Polishing Process Simulation of SiO 2 by CeO 2 Abrasive Grain under Wet Environment. Hyomen Kagaku, 2012, 33, 351-356. 0.0 14
152 Simulation of Atomic Force Microscopy Images of Cleaved Mica Surfaces. Journal of Physical Chemistry B, 1997, 101, 4260-4264.
153 The Fate of a Cluster Colliding onto a Substrate Dissipation of Translational Kinetic Energy. Journal0.813
Density Functional Study of the Insertion and Ring-Opening Mechanism of MCP over Cp2LaH and Cp2LuH Catalysts. Journal of the American Chemical Society, 2003, 125, 16210-16212.
154Development of Crystal Growth Simulator Based on Tight-Binding Quantum Chemical Molecular155 Dynamics Method and Its Application to Silicon Chemical Vapor Deposition Processes. Journal of1.513Physical Chemistry C, 2012, 116, 12525-12531.Different Crystal Growth Mechanisms of $\operatorname{Si}(001)-(2 \tilde{A}-1): H$ during Plasma-Enhanced Chemical Vapor156 Deposition of SiH ₃ and SiH ₂ Radicals: Tight-Binding Quantum Chemical1.513
Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2013, 117, 15602-15614.
157. Tight-binding quantum chemical molecular dynamics simulations for the elucidation of chemical 157 reaction dynamics in SiC etching with SF <sub> $6</$ sub $>/ \mathrm{O}<$ sub $>2<\mid$ sub $>$ plasma. Physical Chemistry 1.3 13
Chemical Physics, 2016, 18, 7808-7819.Molecular dynamics study of mesophase transitions upon annealing of imidazolium-based ionic1.313liquids with long-alkyl chains. Physical Chemistry Chemical Physics, 2018, 20, 9796-9805.Development of Three-Dimensional Porous Structure Simulator POCO2 for Simulations of Irregular0.013
159 Porous Materials. Journal of Computer Chemistry Japan, 2008, 7, 55-62.Molecular Dynamics Simulations of Metal Clusters and Metal Deposition on Metal Surfaces. Japanese
163 NO2 adso
164 Molecular dynamics simulation on a layer-by-layer homoepitaxial growth process of $\mathrm{SrTiO} 3(001)$.
Chemical Vapor Deposition Process on the ZSM-5(010) Surface as Investigated by Molecular Dynamics.
1.2 Journal of Physical Chemistry B, 1999, 103, 1876-1880.
Periodic density functional study on adsorption properties of organic molecules on clean Al (111)
$166 \quad \begin{aligned} & \text { Periodic density functional study on adsorption prop } \\ & \text { surface. Applied Surface Science, 2000, 158, 38-42. }\end{aligned}$
$3.1 \quad 12$

167	Non-equilibrium molecular simulation studies on gas separation by microporous membranes using dual ensemble molecular simulation techniques. Fluid Phase Equilibria, 2002, 194-197, 319-326.	1.4	12
168	A theoretical study on electronic structures and spectroscopic properties of cyclopropane in ground and excited states. Chemical Physics, 2002, 279, 7-14.	0.9	12
169	A Theoretical Study on the Realistic Low Concentration Doping in Silicon Semiconductors by Accelerated Quantum Chemical Molecular Dynamics Method. Japanese Journal of Applied Physics, 2003, 42, 1877-1881.	0.8	12
170	Design of new catalysts for ecological high-quality transportation fuels by combinatorial computational chemistry and tight-binding quantum chemical molecular dynamics approaches. Catalysis Today, 2004, 89, 479-493.	2.2	12
171	Large-Scale Electronic Structure Calculation on Blue Phosphor BaMgAl10017:Eu2+Using Tight-Binding Quantum Chemistry Method Implemented for Rare-Earth Elements. Japanese Journal of Applied Physics, 2007, 46, 2534-2541.	0.8	12

Quantum chemical studies for oxidation of morpholine by Cytochrome P450. Journal of InorganicBiochemistry, 2009, 103, 20-27.
$1.5 \quad 12$
173 Mechanism of superlubricity of a DLC/Si3N4 contact in the presence of castor oil and other green lubricants. Friction, 2022, 10, 1693-1706.
Formation processes of ultrafine metal particles on $\mathrm{MgO}(100)$ as investigated by molecular dynamics 3.1 11 and computer graphics. Applied Surface Science, 1994, 82-83, 559-564.
0.8

11
Effects of Atomic Arrangement at Tip Apex and Tip-Sample Distance on Atomic Force Microscopy Images: A Simulation Study. Japanese Journal of Applied Physics, 1996, 35, 2318-2325.

Ambient atomic force microscopy images of stilbite and their interpretation by molecular simulations.
3.1

11 Applied Surface Science, 1997, 121-122, 543-547.
$3.1 \quad 11$ Surface Science, 1998, 130-132, 545-548.

Periodic Boundary Quantum Chemical Study on ZnO Ultra-Violet Laser Emitting Materials. Japanese Journal of Applied Physics, 1999, 38, 2603-2605.

181 Development of Three-Dimensional Porous Structure Simulator for Optimizing Microstructure of SOFC Anode. ECS Transactions, 2007, 7, 2057-2064.

Theoretical Investigation of the Photophysical Properties of Black Dye Sensitizer
182 [(H3-tctpy)M(NCS)3]-(M = Fe, Ru, Os) in Dye Sensitized Solar Cells. Japanese Journal of Applied Physics,
2007, 46, 2655-2660.
183 Simulation of Electron Diffusion in TiO2Porous Structures in Dye-Sensitized Solar Cells. Japanese
Journal of Applied Physics, 2009, 48, 04C166.

Study of reduction processes over cerium oxide surfaces with atomic hydrogen using ultra
accelerated quantum chemical molecular dynamics. Applied Surface Science, 2010, 257, 1383-1389.
3.1

Surface reduction processes of cerium oxide surfaces by H 2 using ultra accelerated quantum
chemical molecular dynamic study. Catalysis Today, 2011, 164, 9-15.
2.2

Role of OH Termination in Mitigating Friction of Diamond-like Carbon under High Load: A Joint
Simulation and Experimental Study. Langmuir, 2021, 37, 6292-6300.

Electronic and structural features of Pd3 cluster on $\mathrm{MgO}(100)$ surface cluster. Applied Surface
Science, 1998, 130-132, 572-575.
3.1

10

Adsorption properties of SO2 on ultrafine precious metal particles studied using density functional calculation. Applied Surface Science, 2001, 177, 180-188.

Tight-Binding Quantum Chemical Calculations of Electronic Structures of Indium Tin Oxide. Japanese Journal of Applied Physics, 2005, 44, 2806-2809.

Theoretical investigation of ethylene/l-butene copolymerization process using constrained geometry catalyst (CpSiH2NH)-Ti-Cl2. Applied Surface Science, 2008, 254, 7608-7611.
3.1

10

191 Development of porous structure simulator for multi-scale simulation of irregular porous catalysts.

Applied Surface Science, 2008, 254, 7774-7776.
$3.1 \quad 10$

Development of Multiscale Simulator for Dye-Sensitized TiO2Nanoporous Electrode Based on
192 Quantum Chemical Calculation. Japanese Journal of Applied Physics, 2008, 47, 3010-3014.
0.8

10

Modeling of hydrogen vacancy for dissociative adsorption of H 2 on Pd (111) surface by a quantum
chemical molecular dynamics. Catalysis Today, 2011, 164, 16-22.

Tight-Binding Quantum Chemical Molecular Dynamics Simulations of Mechanisms of $\mathrm{SiO}<$ sub> $2</$ sub $>$
194 Etching Processes for CF ₂ and CF ₃ Radicals. Journal of Physical Chemistry C, 2014, 118, 21580-21588.

195 Atomic Control of Ultrafine Gold Particles on $\mathrm{MgO}(100)$ as Investigated by Molecular Dynamics and Computer Graphics. Japanese Journal of Applied Physics, 1995, 34, 6873-6877.

Quantum chemical investigation of reactants in selective reduction of NOx on ion exchanged ZSM-5.
Studies in Surface Science and Catalysis, 1997, , 1485-1492.

197 Quantum chemical study on SiO desorption from a $\mathrm{Si}(111)$ surface. Surface Science, 1997, 387, 59-68.
0.8

9

199 Computational Studies on GaN Surface Polarity and InN/GaN Heterostructures by Density Functional

Computer-aided design of novel heterogeneous catalystsâ $€$ " A combinatorial computational chemistry approach. Studies in Surface Science and Catalysis, 2000, , 401-406.

Investigation of Thermal Annealing Process of GaN Layer on Sapphire by Molecular Dynamics. Japanese Journal of Applied Physics, 2000, 39, 4400-4403.

Effect of S and O on the growth of chemical-vapor deposition diamond (100) surfaces. Journal of Chemical Physics, 2001, 115, 5284-5291.

Combinatorial Computational Chemistry Approach to the High-Throughput Screening of Metal Sulfide
203 Catalysts for CO Hydrogenation Process. Energy \& Fuels, 2003, 17, 857-861.
$2.5 \quad 9$

Development of new kinetic Monte Carlo simulator for hydrogen diffusion process in palladiumâ€"silver alloys. Applied Surface Science, 2005, 244, 636-639.

205 Large-scale calculations of solid oxide fuel cell cermet anode by tight-binding quantum chemistry
3.1

Combinatorial computational chemistry approach of tight-binding quantum chemical molecular
206 dynamics method to the design of the automotive catalysts. Applied Surface Science, 2006, 252, 2598-2602.

Combinatorial Computational Chemistry Approach for Materials Design:Applications in deNOx
207 Catalysis, Fischer-Tropsch Synthesis, Lanthanoid Complex, and Lithium Ion Secondary Battery. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 99-110.

Quantum Chemistry Study of Surface Structure Effects on Secondary Electron Emission in MgO
208 Protecting Layers for Plasma Displays. Japanese Journal of Applied Physics, 2010, 49, 04DJ14.
0.8

9

Tribochemical Reaction Dynamics of Molybdenum Dithiocarbamate on Nascent Iron Surface: A Hybrid
209 Quantum Chemical/Classical Molecular Dynamics Study. Journal of Nanoscience and Nanotechnology, 2010, 10, 2495-2502.

Host emission from BaMgAl¹⁰ O ¹⁷ and SrMgAl¹⁰ O ¹⁷
210 phosphor: Effects of temperature and defect level. Journal of the Society for Information Display, 2010, 18, 211-222.

Chemical Reaction Dynamics of $\mathrm{SiO}<$ sub $>2<\mid$ sub $>$ Etching by $\mathrm{CF}<$ sub $>2</$ sub $>$ Radicals: Tight-Binding
211 Quantum Chemical Molecular Dynamics Simulations. Japanese Journal of Applied Physics, 2013, 52, 026502.

212 Three Tribolayers Self-Generated from SiC Individually Work for Reducing Friction in Different Contact Pressures. Journal of Physical Chemistry C, 2022, 126, 2728-2736.
1.5

9

Molecular-Level Elucidation of a Fracture Process in Slide-Ring Gels via Coarse-Grained Molecular Dynamics Simulations. Macromolecules, 2022, 55, 1946-1956.
2.2

Combinatorial computational chemistry approach to the design of metal oxide electronics materials. ,

Computational chemistry study of solid and aqueous solution interface. Applied Surface Science,
217 2005, 244, 640-643.

A theoretical investigation of the photo-induced intramolecular charge transfer excitation of
218 cuprous (I) bis-phenanthroline by density functional theory. Journal of Organometallic Chemistry,
2005, 690, 187-192.
219 Tight-Binding Quantum Chemical Molecular Dynamics Study on Depth Profile Prediction in Low Energy
Boron Implantation Process. Japanese Journal of Applied Physics, 2005, 44, 2288-2293.

Development of Constraint Algorithm for the Number of Electrons in Molecular Orbitals Consisting
220 Mainly 4fAtomic Orbitals of Rare-Earth Elements and Its Introduction to Tight-Binding Quantum
Chemical Molecular Dynamics Method. Japanese Journal of Applied Physics, 2007, 46, 2505-2509.

Atomistic mechanism of the adsorption of CFCs in zeolite as investigated by Monte Carlo simulation.
Studies in Surface Science and Catalysis, 1997, , 1811-1818.

Application of integrated computational chemistry system to the design of inorganic membranes.
Catalysis Today, 1999, 50, 651-660.

Molecular Dynamics Studies of Surface Difference Effect on Gas Separation by Zeolite Membranes.
Japanese Journal of Applied Physics, 2000, 39, 4385-4388.
0.8

7

Monte Carlo simulation of pyridine base adsorption on heulandite (010). Applied Surface Science, 2002, 188, 377-380.

Hyperconjugation with lone pair of morpholine nitrogen stabilizes transition state for phenyl
230 hydroxylation in CYP3A4 metabolism of (S)-N-[1-(3-morpholin-4-yl phenyl) ethyl]-3-phenylacrylamide.
$\begin{array}{ll}1.2 & 7\end{array}$
Chemical Physics Letters, 2006, 419, 523-527.

231 Novel computational chemistry approaches for studying physico-chemical properties of zeolite materials. Microporous and Mesoporous Materials, 2007, 101, 324-333.

Development and Application of Sintering Dynamics Simulation for Automotive Catalyst. Topics in Catalysis, 2009, 52, 1852-1855.

Cesium desorption mechanism in CsO.33WO3 by first-principles molecular dynamics calculations.
Journal of Applied Physics, 2019, 126, .

Theoretical Study on Fe-Based Metal Clusters: Application in Heterogeneous Catalysis. Materials
Transactions, 2001, 42, 2180-2183.

Oxidation mechanism in the metabolism of (S)-N-[1-(3-morpholin-4-ylphenyl)ethyl]-3-phenylacrylamide
238 on oxyferryl active site in CYP3A4 Cytochrome: DFT modeling. Journal of Molecular Modeling, 2007, 13,

239	The effect of R249S carcinogenic and H168Râ $€$ "R249S suppressor mutations on p53â€"DNA inte multi scale computational study. Computers in Biology and Medicine, 2010, 40, 498-508.
240	Communication: The reason why +c ZnO surface is less stable than $\hat{a}^{\wedge} \mathrm{C} \mathrm{ZnO}$ surface: First-principl calculation. Journal of Chemical Physics, 2011, 135, 241103.
241	Multiscale Simulation of Dye-Sensitized Solar Cells Considering Schottky Barrier Effect at Photoelectrode. Japanese Journal of Applied Physics, 2011, 50, 04DP06.
242	Efficient density functional theory calculations with weak hydrogen quantum effect: Electron density analysis. Chemical Physics Letters, 2012, 525-526, 134-139.
243	First-principles calculation of activity and selectivity of the partial oxidation of ethylene glycol on

Prediction of Macroscopic Properties of Diamond-like Carbon from Atomic-Scale Structure. Journal of Physical Chemistry C, 2019, 123, 24609-24614.
1.5

6

Selective Wear Behaviors of a Water-Lubricating SiC Surface under Rotating-Contact Conditions
Revealed by Large-Scale Reactive Molecular Dynamics Simulations. Journal of Physical Chemistry C
1.5 2021, 125, 14957-14964.

246 Molecular dynamics study of epitaxial growth and cluster formation on $\mathrm{MgO}(001)$. AICHE Journal, 1997, 43, 2765-2772.
$1.8 \quad 5$

247 Molecular dynamics study on vanadium pentoxide. Computational Materials Science, 1999, 14, 114-118.
$1.4 \quad 5$

Density functional theory studies on decomposition of ethyl-palladium complexes: an important role of cationic species. Applied Surface Science, 2005, 244, 631-635.
$3.1 \quad 5$
$3.1 \quad 5$

> Theoretical Investigation on Electrical and Electronic Properties of Carbon Materials. Japanese Journal of Applied Physics, 2007, 46, 2650-2654.

250 Development of the reaction time accelerating molecular dynamics method for simulation of chemical reaction. Applied Surface Science, 2008, 254, 7955-7958.

253	Density functional theory study on quasi-three-dimensional oxidized platinum surface: phase transition between $\hat{\mathrm{I}} \pm$-PtO2-like and ${ }^{\text {I2 }}$-PtO2-like structures. Theoretical Chemistry Accounts, 2011, 130, 1031-1038.	0.5	5
254	Chemical mechanical polishing mechanisms for gallium nitride: Quantum chemical molecular dynamics simulations., 2014, , .		5
255	Molecular Interactions between Pentacene and Imidazolium lonic Liquids: A Molecular Dynamics Study. Chemistry Letters, 2018, 47, 1154-1157.	0.7	5
256	Multiscale Simulation of Dye-Sensitized Solar Cells Considering Schottky Barrier Effect at Photoelectrode. Japanese Journal of Applied Physics, 2011, 50, 04DP06.	0.8	5
257	Molecular dynamics simulation of metal porphyrin complex encapsulated in zeolite. Applied Surface Science, 1997, 119, 346-350.	3.1	4
258	Molecular dynamics study on the stability of $\hat{1} 3-\mathrm{Al} 2 \mathrm{O} 3$ surfaces. Applied Surface Science, 1998, 130-132, 549-554.	3.1	4
259	Integrated computational chemistry system for catalysts design. Bulletin of Materials Science, 1999, 22, 851-861.	0.8	4
260	Use of umbrella sampling in the calculation of the potential of the mean force for silicon surface oxidation. Surface Science, 1999, 426, 290-297.	0.8	4
261	Combinatorial computational chemistry approach to the design of catalysts. , 2000, 3941, 62.		4
262	Adsorption Properties of CH 3 OH on Al (111) and Fe (100) Surfaces: A Periodic First-Principles Investigation. Japanese Journal of Applied Physics, 2000, 39, 4275-4278.	0.8	4
263	Electronic structure of the electrode/electrolyte interface: large-scale tight-binding quantum chemical simulation. Solid State lonics, 2004, 175, 847-850.	1.3	4
264	Periodic density functional and tight-binding quantum chemical molecular dynamics study of surface hydroxyl groups on ZrO2(111)-supported Pt catalyst. Applied Surface Science, 2005, 244, 644-647.	3.1	4
265	Development of a Thermal Conductivity Prediction Simulators Based on the Effects of Electron Conduction and Lattice Vibration. Japanese Journal of Applied Physics, 2007, 46, 2609-2614.	0.8	4

266 Applying ultra-accelerated quantum chemical molecular dynamics technique for the evaluation of
$1.1 \quad 4$
ligand protein interactions. Medicinal Chemistry Research, 2010, 19, 1-10.
4

> Influences of Film Deposition Condition on Friction of Diamond-Like Carbon Film: A Theoretical Investigation. Tribology Online, 2010, 5, 173-180.
$0.2 \quad 4$

Development of Computational Method for Analysis of Carrier Transfer in Light-Emitting Polymers.
268 Japanese Journal of Applied Physics, 2010, 49, 04DK13.
$0.8 \quad 4$

Theoretical Study on the Effect of Three-Dimensional Porous Structure on the Sintering of Nickel
Nanoparticles in the Ni/YSZ Anode. ECS Transactions, 2013, 57, 2459-2464.
$0.3 \quad 4$

Origin of Chemical Order in $\mathrm{a}-\mathrm{Si}\langle\mathrm{sub}\rangle\langle\mathrm{i}\rangle \mathrm{x}\langle\mid \mathrm{i}\rangle\langle\mid \mathrm{sub}\rangle \mathrm{C}\langle\mathrm{sub}\rangle\langle\mathrm{i}\rangle \mathrm{y}\langle\mid \mathrm{i}\rangle\langle\mid \mathrm{sub}\rangle \mathrm{H}\langle\mathrm{sub}\rangle\langle\mathrm{i}\rangle z\langle\mid \mathrm{i}\rangle\langle |$ sub \rangle :
270 Density-Functional Tight-Binding Molecular Dynamics and Statistical Thermodynamics Calculations.
1.5

4 Journal of Physical Chemistry C, 2016, 120, 2615-2627.

The dynamics study of metallocene catalyst using molecular dynamics. Applied Surface Science, 1998, 130-132, 501-505.
3.1

3

273 Density Functional Study on the Transition State of Methane Activation over lon-Exchanged ZSM-5. ACS Symposium Series, 1999, , 321-332.
0.5

Investigation of Initial Growth Process of GaN Film on Sapphire Using Computational Chemistry. approach: application to Fischer-Tropsch synthesis</title>., 2001, , .

A Theoretical Study of Initial Deposition Processes of Mg on MgO: A Novel Quantum Chemical
 0.8
 3 Molecular Dynamics Approach. Japanese Journal of Applied Physics, 2009, 48, 04C126.

$0.8 \quad 3$
283 wavelength of Eu²⁺â€doped phosphors. Journal of the Society for Information Display, 2010, 18, 301-309.

Heterogeneous yielding mechanisms of body centered cubic iron for high resistance to chemical
286 reaction-induced deterioration in supercritical water environments: A reactive molecular dynamics study. Scripta Materialia, 2021, 202, 113997.

First-Principles Molecular Dynamics and Tight-Binding Quantum Chemical Molecular Dynamics
287 Simulations on TribochemicalReaction Dynamics and Low-Friction Mechanismof Diamond-Like Carbon.
$0.0 \quad 3$
Journal of Computer Chemistry Japan, 2013, 12, A3-A13.

Coarse-grained Molecular Dynamics Simulation of the Wear Mechanism of Cyclic Polymer Brushes.
Chemistry Letters, 2020, 49, 1185-1188.

The dynamics of surfaces of metallic and monolayer systems: an embedded-atom molecular dynamics
292 study. Materials Science \& Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 217-218, 112-115.

293 Simulations of the Effects of Tip Apex Geometries on Atomic Force Microscopy Images. Japanese Journal of Applied Physics, 1996, 35, 4101-4104.
$0.8 \quad 2$

294 Application of integrated computer simulation approach to solid surfaces and interfaces. Catalysis
Surveys From Asia, 1998, 2, 133-153.
$1.2 \quad 2$

295 Nonlinear Susceptibility of Second Harmonic Generation Corresponded to the Diamond (100) Surface
 Structures. Japanese Journal of Applied Physics, 2000, 39, 1845-1848.

$0.8 \quad 2$

296 Computational Chemistry Study on Initial Stages of Nitridation of Silicon Surfaces. Japanese Journal of Applied Physics, 2000, 39, 4443-4446.
0.8

2
297 Ab InitioCalculation of F Atom Desorption in Tungsten Chemical Vapor Deposition Process Using
297 WF6and H2. Japanese Journal of Applied Physics, 2003, 42, 5751-5752.

Theoretical Study on the Electronic and Electrical Properties of p-Type Transparent Conducting Metal
298 Oxides. Japanese Journal of Applied Physics, 2007, 46, 2603-2608.
$0.8 \quad 2$
.

299 Electronic structure and electrical conductivity of MgO protecting layer in plasma-display panels: A
tight-binding quantum chemical study. Journal of the Society for Information Display, 2007, 15, 307.
0.8

2

300 Title is missing!. Electrochemistry, 2007, 75, 411-417.
0.6

2

> 301 Multi-scale Simulation Approach for Polymer Electrolyte Fuel Cell Cathode Design. ECS Transactions, 2008, 16, 57-66.

Different dynamic behaviors of the dissociation and recombination reactions in a model calculation
304 of polyethylene by first-principles steered molecular dynamics simulation. Chemical Physics, 2015, 459,

Tribo-Chemical Reaction of Molybdenum Dithiocarbamate on Diamond-like Carbon Films: Quantum Chemical Molecular Dynamics Simulation. Journal of Computer Chemistry Japan, 2014, 13, 177-178.
309 Aluminum Reflow Behavior in Via-Hole Filling Investigated by Molecular Dynamics Simulation and

1
313 CVD Material Processing. Interaction between SiO2 Surface and Au Clusters Studied by Computational
313 Chemistry.. Kagaku Kogaku Ronbunshu, 2000, 26, 770-775.
$0.1 \quad 1$

314 Investigation of Hydrogen Chemisorption on GaAs (111)A Ga Surface byln SituMonitoring andAb InitioCalculation. Japanese Journal of Applied Physics, 2000, 39, 6174-6179.
0.8

1

315 Molecular Adsorption on Ultrafine Precious Metal Particles Studied by Density Functional

 Calculation. Japanese Journal of Applied Physics, 2000, 39, 4261-4265.Development and application of nonequilibrium simulation program for ion diffusion in battery. Solid State lonics, 2002, 152-153, 279-284.
1.3

1
$0.1 \quad 1$

Tight-binding quantum chemical molecular dynamics simulation of boron activation process in crystalline silicon. Applied Surface Science, 2005, 244, 30-33.
3.1

1
23.1: Invited Paper: Electrical and Mechanical Properties of MgO Protecting Layer. Digest of Technical
$317 \quad$ Papers SID International Symposium, 2003, 34, 892.

Theoretical Study on the ATP Hydrolysis Mechanism of HisP Protein, the ATP-Binding Subunit of ABC
319 Transporter. Materials Transactions, 2007, 48, 735-739.
$0.4 \quad 1$

320 the Morpholine Ring? Quantum Mechanical and Molecular Dynamics Studies. Materials Transactions,
$0.4 \quad 1$ 2007, 48, 740-744.

> Quantum chemical molecular dynamical investigation of alkyl nitrite photo-dissociated on copper surfaces. Applied Surface Science, 2008, 254, 6991-6999.

A Theoretical Study on Initial Processes of Li-Ion Transport at the Electrolyte/Cathode Interface: A Quantum Chemical Molecular Dynamics Approach. Japanese Journal of Applied Physics, 2010, 49, 04 DP11.

Parameterization of Reactive Force Field for Ironâ€"Water System. Journal of Computer Chemistry
325 Japan, 2017, 16, 110-111. Japan, 2017, 16, 110-111.

Distributions of Al and Na ions in Na -ion-exchanged mordenites as investigated by molecular dynamics and computer graphics. , 1993, , 1013-1016.

327	Tight-binding Molecular Dynamics Simulation of Silicon Plasma Oxidation.. Hyomen Kagaku, 2000, 21, 188-192.	0.0	1
328	Structures and Properties of Atoms and Molecules Confined in Nanospaces. Dynamic Behavior of Molecules in Nano-Structured Materials as Investigated by Computer Simulation.. Hyomen Kagaku, 2000, 21, 32-38.	0.0	1
329	Challenge Toward Microstructure Optimization of Irregular Porous Materials by Three-Dimentional Porous Structure Simulator. Ceramic Engineering and Science Proceedings, 0, , 135-150.	0.1	1
330	Theoretical estimation of ordered metal species in zeolite pores. Applied Surface Science, 1994, 82-83, 543-547.	3.1	0
331	Molecular Simulation of Thermal Destruction Processes in Aluminophosphates.. Kagaku Kogaku Ronbunshu, 1995, 21, 1140-1146.	0.1	0
332	Periodic density functional studies on $\mathrm{Mg}(\mathrm{H}) \mathrm{x}$-doped GaN semiconductor. Applied Surface Science, 1997, 119, 107-110.	3.1	0
333	Molecular Dynamics Simulations of Adhesional Forces via Hydrocarbon Films. Japanese Journal of Applied Physics, 2000, 39, 4425-4426.	0.8	0

Ab InitioStudy for Siâ€"H Bond Vibration on the Surface of Silicon Vacancy. Japanese Journal of Applied
334 Physics, 2000, 39, 4292-4294.
0.8

0

335 Recent Developments in Transition Metal-Catalyzed Polymerization I. Molecular Dynamics Study of
Propylene Polymerization on Ziegler-Natta Catalyst.. Kobunshi Ronbunshu, 2002, 59, 224-229.
0.2

Theoretical Calculations on Electronic Structure and Catalytic Reaction of Organo-f-Element
Complexes. ChemInform, 2004, 35, no.
0.1

Dynamics of water and methanol in h-mordenite. Studies in Surface Science and Catalysis, 2004, 154,
2143-2150.

Tight-Binding Quantum Chemical Molecular Dynamics Method: a Novel Approach to the Understanding and Design of New Materials and Catalysts. ChemInform, 2005, 36, no.
$0.1 \quad 0$
338

Model first principles molecular dynamics study on the fate of vibrationally excited states in liquid water. Molecular Physics, 2006, 104, 2093-2100.
0.8

Development of a Multi-Scale Electromigration Simulator Based on a Combination of Ultra
340 Accelerated Quantum Chemical Molecular Dynamics and Kinetic Monte Carlo Methods Application to
0.8

Cu Interconnects Lifetime Simulation. Japanese Journal of Applied Physics, 2009, 48, 04C020.

341 Novel Method Based on Quantum Chemistry for Calculation of Ion Induced Secondary Electron
Emission Coefficient of MgO Surfaces. Japanese Journal of Applied Physics, 2009, 48, 04C145.
0.8
19.3: Electronic Structure Calculation and QSPR Analysis of Eu²⁺â€doped Oxide Phosphors:

Relationship between Emission Wavelength and Crystal Structure. Digest of Technical Papers SID
0.1

0 International Symposium, 2009, 40, 254-257.
343 Novel Modeling Methodology for Membranes Study. Membrane, 2009, 34, 212-219.

Application of Reaction Time Accelerating Molecular Dynamic to Modeling of Metallocene－Catalyzed Ethylene／1－butene Copolymerization．Journal of Computer Chemistry Japan，2013，12，43－51．

J061055 First－Principles Investigation on Reaction Activity in Alkaline Fuel Cell with Ethylene Clycol．
The Proceedings of Mechanical Engineering Congress Japan，2013，2013，」061055－1－」061055－3．

