
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3980319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative Stress and Diabetic Retinopathy. Experimental Diabetes Research, 2007, 2007, 1-12.	3.8	506
2	Oxidative Damage in the Retinal Mitochondria of Diabetic Mice: Possible Protection by Superoxide Dismutase. , 2007, 48, 3805.		286
3	Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutrition and Metabolism, 2007, 4, 8.	3.0	278
4	Diabetes-Induced Mitochondrial Dysfunction in the Retina. , 2003, 44, 5327.		261
5	Oxidative stress and diabetic retinopathy: Pathophysiological mechanisms and treatment perspectives. Reviews in Endocrine and Metabolic Disorders, 2008, 9, 315-327.	5.7	253
6	Effect of Reinstitution of Good Glycemic Control on Retinal Oxidative Stress and Nitrative Stress in Diabetic Rats. Diabetes, 2003, 52, 818-823.	0.6	252
7	Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2474-2483.	3.8	248
8	Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Progress in Retinal and Eye Research, 2015, 48, 40-61.	15.5	245
9	Diabetes-induced Activation of Nuclear Transcriptional Factor in the Retina, and its Inhibition by Antioxidants. Free Radical Research, 2003, 37, 1169-1180.	3.3	242
10	Effect of Long-Term Administration of α-Lipoic Acid on Retinal Capillary Cell Death and the Development of Retinopathy in Diabetic Rats. Diabetes, 2004, 53, 3233-3238.	0.6	223
11	Diabetic Retinopathy: Mitochondrial Dysfunction and Retinal Capillary Cell Death. Antioxidants and Redox Signaling, 2005, 7, 1581.	5.4	218
12	Role of interleukin-1Â in the pathogenesis of diabetic retinopathy. British Journal of Ophthalmology, 2004, 88, 1343-1347.	3.9	210
13	Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radical Biology and Medicine, 2006, 41, 1191-1196.	2.9	203
14	Retinal glutamate in diabetes and effect of antioxidants. Neurochemistry International, 2001, 38, 385-390.	3.8	187
15	Epigenetic Changes in Mitochondrial Superoxide Dismutase in the Retina and the Development of Diabetic Retinopathy. Diabetes, 2011, 60, 1304-1313.	0.6	185
16	Transcription Factor Nrf2-Mediated Antioxidant Defense System in the Development of Diabetic Retinopathy. , 2013, 54, 3941.		174
17	Role of Mitochondrial Superoxide Dismutase in the Development of Diabetic Retinopathy. , 2006, 47, 1594.		163
18	Abnormalities of Retinal Metabolism in Diabetes or Experimental Galactosemia. IV. Antioxidant Defense System. Free Radical Biology and Medicine, 1997, 22, 587-592.	2.9	160

#	Article	IF	CITATIONS
19	Role of Interleukin-1 $\hat{1}^2$ in the Development of Retinopathy in Rats: Effect of Antioxidants. , 2004, 45, 4161.		152
20	Role of Mitochondrial DNA Damage in the Development of Diabetic Retinopathy, and the Metabolic Memory Phenomenon Associated with Its Progression. Antioxidants and Redox Signaling, 2010, 13, 797-805.	5.4	152
21	Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon. Journal of Cellular Biochemistry, 2010, 110, 1306-1313.	2.6	144
22	Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9. Expert Opinion on Investigational Drugs, 2012, 21, 797-805.	4.1	140
23	Diabetes-induced Activation of Caspase-3 in Retina: Effect of Antioxidant Therapy. Free Radical Research, 2002, 36, 993-999.	3.3	134
24	Abrogation of <i>MMP-9</i> Gene Protects Against the Development of Retinopathy in Diabetic Mice by Preventing Mitochondrial Damage. Diabetes, 2011, 60, 3023-3033.	0.6	131
25	Oxidative damage of mitochondrial DNA in diabetes and its protection by manganese superoxide dismutase. Free Radical Research, 2010, 44, 313-321.	3.3	129
26	Beneficial Effect of Zeaxanthin on Retinal Metabolic Abnormalities in Diabetic Rats. , 2008, 49, 1645.		125
27	Mitochondrial biogenesis and the development of diabetic retinopathy. Free Radical Biology and Medicine, 2011, 51, 1849-1860.	2.9	122
28	Epigenetic Modification of Mitochondrial DNA in the Development of Diabetic Retinopathy. , 2015, 56, 5133.		122
29	Epigenetic Modification of <i>Sod2</i> in the Development of Diabetic Retinopathy and in the Metabolic Memory: Role of Histone Methylation. , 2013, 54, 244.		119
30	Regulation of Matrix Metalloproteinase-9 by Epigenetic Modifications and the Development of Diabetic Retinopathy. Diabetes, 2013, 62, 2559-2568.	0.6	116
31	TIAM1–RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia, 2014, 57, 1047-1056.	6.3	114
32	Sirt1, a Negative Regulator of Matrix Metalloproteinase-9 in Diabetic Retinopathy. , 2014, 55, 5653.		106
33	Increased Phagocyte-Like NADPH Oxidase and ROS Generation in Type 2 Diabetic ZDF Rat and Human Islets. Diabetes, 2011, 60, 2843-2852.	0.6	102
34	Mitochondria DNA Replication and DNA Methylation in the Metabolic Memory Associated with Continued Progression of Diabetic Retinopathy. , 2012, 53, 4881.		101
35	Sirt1: A Guardian of the Development of Diabetic Retinopathy. Diabetes, 2018, 67, 745-754.	0.6	95
36	Metabolic Memory Phenomenon and Accumulation of Peroxynitrite in Retinal Capillaries. Experimental Diabetes Research, 2007, 2007, 1-7.	3.8	93

#	Article	IF	CITATIONS
37	Role of Glyceraldehyde 3-Phosphate Dehydrogenase in the Development and Progression of Diabetic Retinopathy. Diabetes, 2009, 58, 227-234.	0.6	93
38	Oxidative stress and the development of diabetic retinopathy: Contributory role of matrix metalloproteinase-2. Free Radical Biology and Medicine, 2009, 46, 1677-1685.	2.9	91
39	Diabetic Retinopathy and Damage to Mitochondrial Structure and Transport Machinery. , 2011, 52, 8739.		89
40	Reversal of hyperglycemia and diabetic nephropathy. Journal of Diabetes and Its Complications, 2004, 18, 282-288.	2.3	87
41	Beneficial effects of the nutritional supplements on the development of diabetic retinopathy. Nutrition and Metabolism, 2014, 11, 8.	3.0	87
42	Diabetic Retinopathy, Superoxide Damage and Antioxidants. Current Pharmaceutical Biotechnology, 2011, 12, 352-361.	1.6	86
43	Damaged Mitochondrial DNA Replication System and the Development of Diabetic Retinopathy. Antioxidants and Redox Signaling, 2012, 17, 492-504.	5.4	86
44	Epigenetic Modifications of Keap1 Regulate Its Interaction With the Protective Factor Nrf2 in the Development of Diabetic Retinopathy. , 2014, 55, 7256.		86
45	Mitochondrial Defects Drive Degenerative Retinal Diseases. Trends in Molecular Medicine, 2020, 26, 105-118.	6.7	86
46	Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction. Laboratory Investigation, 2010, 90, 1365-1372.	3.7	85
47	Role of Matrix Metalloproteinase-9 in the Development of Diabetic Retinopathy and Its Regulation by H-Ras. , 2010, 51, 4320.		85
48	Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy. Laboratory Investigation, 2016, 96, 1040-1049.	3.7	85
49	Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kB) in the retina. Acta Diabetologica, 2004, 41, 194-199.	2.5	84
50	Therapeutic potential of anti-oxidants and diabetic retinopathy. Expert Opinion on Investigational Drugs, 2001, 10, 1665-1676.	4.1	81
51	Epigenetic Modifications and Diabetic Retinopathy. BioMed Research International, 2013, 2013, 1-9.	1.9	81
52	Long Noncoding RNA <i>MALAT1</i> and Regulation of the Antioxidant Defense System in Diabetic Retinopathy. Diabetes, 2021, 70, 227-239.	0.6	81
53	Abnormalities of retinal metabolism in diabetes or experimental galactosemia VIII. Prevention by aminoguanidine. Current Eye Research, 2000, 21, 814-819.	1.5	79
54	A compensatory mechanism protects retinal mitochondria from initial insult in diabetic retinopathy. Free Radical Biology and Medicine, 2012, 53, 1729-1737.	2.9	77

#	Article	IF	CITATIONS
55	Novel Role of Mitochondrial Matrix Metalloproteinase-2 in the Development of Diabetic Retinopathy. , 2011, 52, 3832.		76
56	Epigenetic modifications of Nrf2-mediated glutamate–cysteine ligase: implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression. Free Radical Biology and Medicine, 2014, 75, 129-139.	2.9	76
57	Role of Mitochondria Biogenesis in the Metabolic Memory Associated with the Continued Progression of Diabetic Retinopathy and Its Regulation by Lipoic Acid. , 2011, 52, 8791.		75
58	Abnormalities of retinal metabolism in diabetes or galactosemia II. Comparison of γ-glutamyl transpeptidase in retina and cerebral cortex, and effects of antioxidant therapy. Current Eye Research, 1994, 13, 891-896.	1.5	74
59	Resistance of retinal inflammatory mediators to suppress after reinstitution of good glycemic control: novel mechanism for metabolic memory. Journal of Diabetes and Its Complications, 2010, 24, 55-63.	2.3	73
60	Epigenetic regulation of redox signaling in diabetic retinopathy: Role of Nrf2. Free Radical Biology and Medicine, 2017, 103, 155-164.	2.9	72
61	Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinaseâ€9. Journal of Cellular Physiology, 2012, 227, 1052-1061.	4.1	70
62	Epigenetics and Regulation of Oxidative Stress in Diabetic Retinopathy. , 2018, 59, 4831.		70
63	Inhibition of Retinopathy and Retinal Metabolic Abnormalities in Diabetic Rats With AREDS-Based Micronutrients. JAMA Ophthalmology, 2008, 126, 1266.	2.4	69
64	Metabolic memory and diabetic retinopathy: Role of inflammatory mediators in retinal pericytes. Experimental Eye Research, 2010, 90, 617-623.	2.6	67
65	Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1617-1626.	3.8	67
66	Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sciences, 2005, 76, 1051-1060.	4.3	66
67	Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in models of glucolipotoxicity and diabetes. Biochemical Pharmacology, 2014, 88, 275-283.	4.4	66
68	Diabetic retinopathy, metabolic memory and epigenetic modifications. Vision Research, 2017, 139, 30-38.	1.4	66
69	Mitochondrial Stability in Diabetic Retinopathy: Lessons Learned From Epigenetics. Diabetes, 2019, 68, 241-247.	0.6	66
70	Lipotoxicity Augments Glucotoxicity-Induced Mitochondrial Damage in the Development of Diabetic Retinopathy. , 2015, 56, 2985.		64
71	Diabetes-induced metabolic abnormalities in myocardium: Effect of antioxidant therapy. Free Radical Research, 2000, 32, 67-74.	3.3	59
72	Retinal Mitochondrial DNA Mismatch Repair in the Development of Diabetic Retinopathy, and Its Continued Progression After Termination of Hyperglycemia. Investigative Ophthalmology and Visual Science, 2014, 55, 6960-6967.	3.3	58

#	Article	IF	CITATIONS
73	Mitochondria Damage in the Pathogenesis of Diabetic Retinopathy and in the Metabolic Memory Associated with its Continued Progression. Current Medicinal Chemistry, 2013, 20, 3226-3233.	2.4	57
74	Hyperlipidemia and the development of diabetic retinopathy: Comparison between type 1 and type 2 animal models. Metabolism: Clinical and Experimental, 2016, 65, 1570-1581.	3.4	56
75	Regulation of Matrix Metalloproteinase in the Pathogenesis of Diabetic Retinopathy. Progress in Molecular Biology and Translational Science, 2017, 148, 67-85.	1.7	56
76	Atypical antipsychotics, insulin resistance and weight; a meta-analysis of healthy volunteer studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 83, 55-63.	4.8	52
77	Crosstalk Between Histone and DNA Methylation in Regulation of Retinal Matrix Metalloproteinase-9 in Diabetes. , 2017, 58, 6440.		50
78	Metabolic memory in diabetes – from in vitro oddity to in vivo problem: Role of Apoptosis. Brain Research Bulletin, 2010, 81, 297-302.	3.0	49
79	The Diabetes Visual Function Supplement Study (<i>DiVFuSS</i>). British Journal of Ophthalmology, 2016, 100, 227-234.	3.9	49
80	Retinopathy in a Diet-Induced Type 2 Diabetic Rat Model and Role of Epigenetic Modifications. Diabetes, 2020, 69, 689-698.	0.6	49
81	Potential Contributory Role of H-Ras, a Small G-Protein, in the Development of Retinopathy in Diabetic Rats. Diabetes, 2004, 53, 775-783.	0.6	48
82	Posttranslational modification of mitochondrial transcription factor A in impaired mitochondria biogenesis: Implications in diabetic retinopathy and metabolic memory phenomenon. Experimental Eye Research, 2014, 121, 168-177.	2.6	48
83	The Role of DNA Methylation in the Metabolic Memory Phenomenon Associated With the Continued Progression of Diabetic Retinopathy. , 2016, 57, 5748.		47
84	Beyond AREDS: Is There a Place for Antioxidant Therapy in the Prevention/Treatment of Eye Disease?. , 2011, 52, 8665.		45
85	Tiam1-Rac1 Axis Promotes Activation of p38 MAP Kinase in the Development of Diabetic Retinopathy: Evidence for a Requisite Role for Protein Palmitoylation. Cellular Physiology and Biochemistry, 2015, 36, 208-220.	1.6	45
86	Abnormalities of retinal metabolism in diabetes or experimental galactosemia. VI. Comparison of retinal and cerebral cortex metabolism, and effects of antioxidant therapy. Free Radical Biology and Medicine, 1999, 26, 371-378.	2.9	44
87	Molecular Mechanism of Transcriptional Regulation of Matrix Metalloproteinase-9 in Diabetic Retinopathy. Journal of Cellular Physiology, 2016, 231, 1709-1718.	4.1	43
88	DNA Methylation—a Potential Source of Mitochondria DNA Base Mismatch in the Development of Diabetic Retinopathy. Molecular Neurobiology, 2019, 56, 88-101.	4.0	43
89	Interrelationship between activation of matrix metalloproteinases and mitochondrial dysfunction in the development of diabetic retinopathy. Biochemical and Biophysical Research Communications, 2013, 438, 760-764.	2.1	41
90	Contribution of epigenetics in diabetic retinopathy. Science China Life Sciences, 2015, 58, 556-563.	4.9	41

#	Article	IF	CITATIONS
91	Role of PARP-1 as a novel transcriptional regulator of MMP-9 in diabetic retinopathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1761-1769.	3.8	39
92	Glyceraldehyde-3-Phosphate Dehydrogenase in Retinal Microvasculature: Implications for the Development and Progression of Diabetic Retinopathy. , 2010, 51, 1765.		37
93	Therapeutic targets for altering mitochondrial dysfunction associated with diabetic retinopathy. Expert Opinion on Therapeutic Targets, 2018, 22, 233-245.	3.4	37
94	Adaptor Protein p66Shc: A Link Between Cytosolic and Mitochondrial Dysfunction in the Development of Diabetic Retinopathy. Antioxidants and Redox Signaling, 2019, 30, 1621-1634.	5.4	37
95	Impaired transport of mitochondrial transcription factor A (TFAM) and the metabolic memory phenomenon associated with the progression of diabetic retinopathy. Diabetes/Metabolism Research and Reviews, 2013, 29, 204-213.	4.0	36
96	Epigenetics and Mitochondrial Stability in the Metabolic Memory Phenomenon Associated with Continued Progression of Diabetic Retinopathy. Scientific Reports, 2020, 10, 6655.	3.3	36
97	Hexosamine induction of oxidative stress, hypertrophy and laminin expression in renal mesangial cells: effect of the anti-oxidant α-lipoic acid. Cell Biochemistry and Function, 2007, 25, 537-550.	2.9	35
98	Role of oxidative stress in epigenetic modification of MMP-9 promoter in the development of diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 955-962.	1.9	35
99	TXNIP mediates high glucose-induced mitophagic flux and lysosome enlargement in human retinal pigment epithelial cells. Biology Open, 2019, 8, .	1.2	33
100	Retinal metabolic abnormalities in diabetic mouse: Comparison with diabetic rat. Current Eye Research, 2002, 24, 123-128.	1.5	31
101	Peripheral Blood Mitochondrial DNA Damage as a Potential Noninvasive Biomarker of Diabetic Retinopathy. , 2016, 57, 4035.		31
102	Diabetic retinopathy and transcriptional regulation of a small molecular weight G-Protein, Rac1. Experimental Eye Research, 2016, 147, 72-77.	2.6	30
103	Increased oxidative stress in diabetes regulates activation of a small molecular weight G-protein, H-Ras, in the retina. Molecular Vision, 2007, 13, 602-10.	1.1	29
104	Functional Regulation of an Oxidative Stress Mediator, Rac1, in Diabetic Retinopathy. Molecular Neurobiology, 2019, 56, 8643-8655.	4.0	28
105	Epigenetic Modifications Compromise Mitochondrial DNA Quality Control in the Development of Diabetic Retinopathy. , 2019, 60, 3943.		27
106	Faulty homocysteine recycling in diabetic retinopathy. Eye and Vision (London, England), 2020, 7, 4.	3.0	27
107	Small molecular weight G-protein, H-Ras, and retinal endothelial cell apoptosis in diabetes. Molecular and Cellular Biochemistry, 2007, 296, 69-76.	3.1	26
108	Epigenetic modifications in diabetes. Metabolism: Clinical and Experimental, 2022, 126, 154920.	3.4	26

#	Article	IF	CITATIONS
109	Homocysteine Disrupts Balance between MMP-9 and Its Tissue Inhibitor in Diabetic Retinopathy: The Role of DNA Methylation. International Journal of Molecular Sciences, 2020, 21, 1771.	4.1	25
110	Interleukin-1β and mitochondria damage, and the development of diabetic retinopathy. Journal of Ocular Biology, Diseases, and Informatics, 2011, 4, 3-9.	0.2	22
111	Epigenetic Modifications in Peripheral Blood as Potential Noninvasive Biomarker of Diabetic Retinopathy. Translational Vision Science and Technology, 2019, 8, 43.	2.2	22
112	The Regulatory Role of Rac1, a Small Molecular Weight GTPase, in the Development of Diabetic Retinopathy. Journal of Clinical Medicine, 2019, 8, 965.	2.4	21
113	Translocation of H-Ras and its implications in the development of diabetic retinopathy. Biochemical and Biophysical Research Communications, 2009, 387, 461-466.	2.1	19
114	RACking up ceramide-induced islet β-cell dysfunction. Biochemical Pharmacology, 2018, 154, 161-169.	4.4	19
115	Nuclear Genome-Encoded Long Noncoding RNAs and Mitochondrial Damage in Diabetic Retinopathy. Cells, 2021, 10, 3271.	4.1	19
116	Effect of PKCÎ ² on Retinal Oxygenation Response in Experimental Diabetes. , 2004, 45, 937.		18
117	Diabetic Retinopathy and NADPH Oxidase-2: A Sweet Slippery Road. Antioxidants, 2021, 10, 783.	5.1	17
118	Diabetes regulates small molecular weight G-protein, H-Ras, in the microvasculature of the retina: Implication in the development of retinopathy. Microvascular Research, 2008, 76, 189-193.	2.5	16
119	Hydrogen Sulfide: A Potential Therapeutic Target in the Development of Diabetic Retinopathy. , 2020, 61, 35.		16
120	Regulation of Rac1 transcription by histone and DNA methylation in diabetic retinopathy. Scientific Reports, 2021, 11, 14097.	3.3	15
121	Termination of experimental galactosemia in rats, and progression of retinal metabolic abnormalities. Investigative Ophthalmology and Visual Science, 2002, 43, 3287-91.	3.3	15
122	The role of Raf-1 kinase in diabetic retinopathy. Expert Opinion on Therapeutic Targets, 2011, 15, 357-364.	3.4	14
123	Diabetic Retinopathy: Mitochondria Caught in a Muddle of Homocysteine. Journal of Clinical Medicine, 2020, 9, 3019.	2.4	12
124	Mitochondrial Dynamics in the Metabolic Memory of Diabetic Retinopathy. Journal of Diabetes Research, 2022, 2022, 1-14.	2.3	12
125	Mitochondrial Fragmentation in a High Homocysteine Environment in Diabetic Retinopathy. Antioxidants, 2022, 11, 365.	5.1	8

126 Capillary Dropout in Diabetic Retinopathy. , 2008, , 265-282.

#	Article	IF	CITATIONS
127	Role of raf-1 kinase in diabetes-induced accelerated apoptosis of retinal capillary cells. International Journal of Biomedical Science, 2008, 4, 20-8.	0.1	4
128	Role of retinal mitochondria in the development of diabetic retinopathy. Expert Review of Ophthalmology, 2007, 2, 237-247.	0.6	2
129	Deciphering ocular diseases on an epigenetic platform. , 2019, , 117-138.		1
130	Epigenetics and Mitochondrial Stability in Diabetic Retinopathy. Diabetes, 2018, 67, .	0.6	1
131	Long Noncoding RNAs and Mitochondrial Homeostasis in the Development of Diabetic Retinopathy. Frontiers in Endocrinology, 2022, 13, .	3.5	1
132	Involvement of High Mobility Group Box 1 Protein in Optic Nerve Damage in Diabetes. Eye and Brain, 2022, Volume 14, 59-69.	2.5	0