Joelle Gouy de Bellocq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/398026/publications.pdf

Version: 2024-02-01

71 papers 1,633 citations

304743 22 h-index 36 g-index

73 all docs 73 docs citations

times ranked

73

2073 citing authors

#	Article	IF	CITATIONS
1	Detection and genetic diversity of Mopeia virus in Mastomys natalensis from different habitats in the Limpopo National Park, Mozambique. Infection, Genetics and Evolution, 2022, 98, 105204.	2.3	3
2	Molecular detection and genomic characterization of diverse hepaciviruses in African rodents. Virus Evolution, 2021, 7, veab036.	4.9	11
3	Genome Sequence of Ruloma Virus, a Novel Paramyxovirus Clustering Basally to Members of the Genus <i>Jeilongvirus</i> . Microbiology Resource Announcements, 2021, 10, .	0.6	11
4	Multiple Mammarenaviruses Circulating in Angolan Rodents. Viruses, 2021, 13, 982.	3.3	10
5	Prevalence of Orthohantavirus-Reactive Antibodies in Humans and Peri-Domestic Rodents in Northern Ethiopia. Viruses, 2021, 13, 1054.	3.3	4
6	Mitogenomics and Evolutionary History of Rodent Whipworms (Trichuris spp.) Originating from Three Biogeographic Regions. Life, 2021, 11, 540.	2.4	2
7	Phylogenomic Characterization of Lopma Virus and Praja Virus, Two Novel Rodent-Borne Arteriviruses. Viruses, 2021, 13, 1842.	3.3	4
8	New Perspective on the Geographic Distribution and Evolution of Lymphocytic Choriomeningitis Virus, Central Europe. Emerging Infectious Diseases, 2021, 27, 2638-2647.	4.3	15
9	Density dependence and persistence of Morogoro arenavirus transmission in a fluctuating population of its reservoir host. Journal of Animal Ecology, 2020, 89, 506-518.	2.8	13
10	Intensity of infection with intracellular <i>Eimeria</i> spp. and pinworms is reduced in hybrid mice compared to parental subspecies. Journal of Evolutionary Biology, 2020, 33, 435-448.	1.7	11
11	Three arenaviruses in three subspecific natal multimammate mouse taxa in Tanzania: same host specificity, but different spatial genetic structure?. Virus Evolution, 2020, 6, veaa039.	4.9	18
12	Dhati Welel virus, the missing mammarenavirus of the widespread Mastomys natalensis. Journal of Vertebrate Biology, 2020, 69, $1.$	1.0	10
13	Diversity of Karyolysus and Schellackia from the Iberian lizard Lacerta schreiberi with sequence data from engorged ticks. Parasitology, 2019, 146, 1690-1698.	1.5	9
14	Tigray Orthohantavirus Infects Two Related Rodent Species Adapted to Different Elevations in Ethiopia. Vector-Borne and Zoonotic Diseases, 2019, 19, 950-953.	1.5	7
15	Evolutionary history of Pneumocystis fungi in their African rodent hosts. Infection, Genetics and Evolution, 2019, 75, 103934.	2.3	6
16	Shifting Paradigms for Studying Parasitism in Hybridising Hosts: Response to Theodosopoulos, Hund, and Taylor. Trends in Ecology and Evolution, 2019, 34, 387-389.	8.7	7
17	Arenavirus infection correlates with lower survival of its natural rodent host in a long-term capture-mark-recapture study. Parasites and Vectors, 2018, 11, 90.	2.5	15
18	Holobiont suture zones: Parasite evidence across the European house mouse hybrid zone. Molecular Ecology, 2018, 27, 5214-5227.	3.9	18

#	Article	IF	Citations
19	Discovery and genome characterization of three new Jeilongviruses, a lineage of paramyxoviruses characterized by their unique membrane proteins. BMC Genomics, 2018, 19, 617.	2.8	35
20	Host subspecific viral strains in European house mice: Murine cytomegalovirus in the Eastern (Mus) Tj ETQq0 0	0 rgBŢ /Ον	verlock 10 Tf 50
21	Hantavirus Strains in East Africa Related to Western African Hantaviruses. Vector-Borne and Zoonotic Diseases, 2017, 17, 278-280.	1.5	24
22	No measurable adverse effects of Lassa, Morogoro and Gairo arenaviruses on their rodent reservoir host in natural conditions. Parasites and Vectors, 2017, 10, 210.	2.5	20
23	When Viruses Don't Go Viral: The Importance of Host Phylogeographic Structure in the Spatial Spread of Arenaviruses. PLoS Pathogens, 2017, 13, e1006073.	4.7	52
24	Genetic distinction between contiguous urban and rural multimammate mice in Tanzania despite gene flow. Journal of Evolutionary Biology, 2016, 29, 1952-1967.	1.7	14
25	Genetic structure and diversity of the black and rufous sengi in Tanzanian coastal forests. Journal of Zoology, 2016, 300, 305-313.	1.7	2
26	Testing parasite â€intimacy': the whipworm <i><scp>T</scp>richuris muris</i> inÂthe <scp>E</scp> uropean house mouse hybrid zone. Ecology and Evolution, 2016, 6, 2688-2701.	1.9	14
27	Complete genome characterisation and phylogenetic position of Tigray hantavirus from the Ethiopian white-footed mouse, Stenocephalemys albipes. Infection, Genetics and Evolution, 2016, 45, 242-245.	2.3	7
28	Spotted fever group rickettsiae detected in immature stages of ticks parasitizing on Iberian endemic lizard Lacerta schreiberi Bedriaga, 1878. Ticks and Tick-borne Diseases, 2015, 6, 711-714.	2.7	6
29	Gairo virus, a novel arenavirus of the widespread Mastomys natalensis: Genetically divergent, but ecologically similar to Lassa and Morogoro viruses. Virology, 2015, 476, 249-256.	2.4	34
30	Development of eight polymorphic microsatellite markers in the Black and Rufous sengi, Rhynchocyon petersi. Conservation Genetics Resources, 2015, 7, 193-195.	0.8	2
31	Polymorphism in <i>vkorc1</i> Gene of Natal Multimammate Mice, <i>Mastomys natalensis</i> , in Tanzania. Journal of Heredity, 2015, 106, 637-643.	2.4	6
32	Murine Cytomegalovirus Is Not Restricted to the House Mouse Mus musculus domesticus: Prevalence and Genetic Diversity in the European House Mouse Hybrid Zone. Journal of Virology, 2015, 89, 406-414.	3.4	16
33	Age at weaning, immunocompetence and ectoparasite performance in a precocial desert rodent. Journal of Experimental Biology, 2014, 217, 3078-84.	1.7	4
34	High Prevalence of Rickettsia typhi and Bartonella Species in Rats and Fleas, Kisangani, Democratic Republic of the Congo. American Journal of Tropical Medicine and Hygiene, 2014, 90, 463-468.	1.4	16
35	Morphometrical and genetic comparison of two nematode species: H. spumosa and H. dahomensis (Nematoda, Heterakidae). Acta Parasitologica, 2013, 58, 389-98.	1.1	11
36	Trichuris spp. (Nematoda: Trichuridae) from Two Rodents, Mastomys natalensis and Gerbilliscus vicinus in Tanzania. Journal of Parasitology, 2013, 99, 868.	0.7	16

#	Article	IF	CITATIONS
37	<i>Bartonella</i> Prevalence and Genetic Diversity in Small Mammals from Ethiopia. Vector-Borne and Zoonotic Diseases, 2013, 13, 164-175.	1.5	22
38	Paraconcinnum leirsin.sp. (Trematoda: Dicrocoeliidae) from Rodents in Tanzania and its Phylogenetic Position within the Dicrocoeliids. African Zoology, 2012, 47, 326-331.	0.4	4
39	High Diversity of RNA Viruses in Rodents, Ethiopia. Emerging Infectious Diseases, 2012, 18, 2047-2050.	4.3	41
40	Development and characterization of multiplex panels of microsatellite markers for Syphacia obvelata, a parasite of the house mouse (Mus musculus), using a high throughput DNA sequencing approach. Molecular and Biochemical Parasitology, 2012, 185, 154-156.	1,1	5
41	New insights into parasitism in the house mouse hybrid zone. , 2012, , 455-481.		9
42	Is there sex-biased resistance and tolerance in Mediterranean wood mouse (Apodemus sylvaticus) populations facing multiple helminth infections?. Oecologia, 2012, 170, 123-135.	2.0	39
43	WHERE ARE THE WORMY MICE? A REEXAMINATION OF HYBRID PARASITISM IN THE EUROPEAN HOUSE MOUSE HYBRID ZONE. Evolution; International Journal of Organic Evolution, 2012, 66, 2757-2772.	2.3	47
44	MHC class II DQA gene variation across cohorts of brown hares (Lepus europaeus) from eastern Austria: Testing for different selection hypotheses. Mammalian Biology, 2011, 76, 251-257.	1.5	8
45	Presence of Mopeia Virus, an African Arenavirus, Related to Biotope and Individual Rodent Host Characteristics: Implications for Virus Transmission. Vector-Borne and Zoonotic Diseases, 2011, 11, 1125-1131.	1.5	44
46	Genetic structure and contrasting selection pattern at two major histocompatibility complex genes in wild house mouse populations. Heredity, 2011, 106, 727-740.	2.6	27
47	Evolutionary genetics of MHC class II beta genes in the brown hare, Lepus europaeus. Immunogenetics, 2011, 63, 743-751.	2.4	16
48	Polymorphism and signatures of selection in the multimammate rat DQB gene. Immunogenetics, 2010, 62, 59-64.	2.4	9
49	Homozygosity at a class II MHC locus depresses female reproductive ability in European brown hares. Molecular Ecology, 2010, 19, 4131-4143.	3.9	18
50	Sympatric Occurrence of 3 Arenaviruses, Tanzania. Emerging Infectious Diseases, 2010, 16, 692-695.	4.3	33
51	Can scent-mediated female mate preference explain an abrupt mtDNA cline in Lacerta schreiberi?. Behaviour, 2009, 146, 831-841.	0.8	2
52	Evolutionary history of an MHC gene in two leporid species: characterisation of Mhc-DQA in the European brown hare and comparison with the European rabbit. Immunogenetics, 2009, 61, 131-144.	2.4	31
53	Complementary DNA sequences encoding the multimammate rat MHC class II DQ <i>î±</i> and <i>î²</i> chains and crossâ€species sequence comparison in rodents. Tissue Antigens, 2009, 74, 233-237.	1.0	4
54	Variation in Phenotype, Parasite Load and Male Competitive Ability across a Cryptic Hybrid Zone. PLoS ONE, 2009, 4, e5677.	2.5	19

#	Article	lF	CITATIONS
55	Coevolutionary relationship between helminth diversity and MHC class II polymorphism in rodents. Journal of Evolutionary Biology, 2008, 21, 1144-1150.	1.7	75
56	Effects of food abundance, age, and flea infestation on the body condition and immunological variables of a rodent host, and their consequences for flea survival. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 150, 66-74.	1.8	15
57	Immunocompetence and helminth community of the white-toothed shrew, Crocidura russula from the Montseny Natural Park, Spain. European Journal of Wildlife Research, 2007, 53, 315-320.	1.4	16
58	Immunocompetence does not correlate with resistance to helminth parasites in house mouse subspecies and their hybrids. Parasitology Research, 2007, 100, 321-328.	1.6	12
59	Immunocompetence and flea parasitism of a desert rodent. Functional Ecology, 2006, 20, 637-646.	3.6	23
60	Temporal dynamics of a T-cell mediated immune response in desert rodents. Comparative Biochemistry and Physiology Part A, Molecular & Empty Integrative Physiology, 2006, 145, 554-559.	1.8	50
61	Immunogenetics of micromammalmacroparasite interactions. , 2006, , 401-442.		6
62	Allelic diversity at the Mhc -DQA locus of woodmouse populations (Apodemus sylvaticus) present in the islands and mainland of the northern Mediterranean. Global Ecology and Biogeography, 2005, 14, 115-122.	5.8	14
63	The biogeography of host-parasite interactions: from nested assemblages to comparative phylogeography. Mammal Study, 2005, 30, S87-S93.	0.6	3
64	Evolution and trans-species polymorphism of MHC class $\hat{\Pi}^2$ genes in cyprinid fish. Fish and Shellfish Immunology, 2005, 18, 199-222.	3.6	59
65	Is sex-biased ectoparasitism related to sexual size dimorphism in small mammals of Central Europe?. Parasitology, 2004, 129, 505-510.	1.5	82
66	A comparison of the structure of helminth communities in the woodmouse, Apodemus sylvaticus, on islands of the western Mediterranean and continental Europe. Parasitology Research, 2003, 90, 64-70.	1.6	61
67	Helminths and Ectoparasites of Rattus rattus and Mus musculus from Sicily, Italy. Comparative Parasitology, 2003, 70, 199-204.	0.4	28
68	Mammal density and patterns of ectoparasite species richness and abundance. Oecologia, 2002, 131, 289-295.	2.0	153
69	Patterns of parasite species richness of Western Palaeartic micro-mammals: island effects. Ecography, 2002, 25, 173-183.	4.5	60
70	Body size increase in insular rodent populations: a role for predators?. Global Ecology and Biogeography, 2002, 11, 427-436.	5.8	64
71	Phylogeny of the Trichostrongylina (Nematoda) Inferred from 28S rDNA Sequences. Molecular Phylogenetics and Evolution, 2001, 19, 430-442.	2.7	69