Paolo De Natale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3980017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum cascade lasers: 20 years of challenges. Optics Express, 2015, 23, 5167.	1.7	412
2	Probing the Ultimate Limit of Fiber-Optic Strain Sensing. Science, 2010, 330, 1081-1084.	6.0	202
3	Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection. Physical Review Letters, 2011, 107, 270802.	2.9	162
4	Observing the Intrinsic Linewidth of a Quantum-Cascade Laser: Beyond the Schawlow-Townes Limit. Physical Review Letters, 2010, 104, 083904.	2.9	147
5	Quantum-limited frequency fluctuations in a terahertz laser. Nature Photonics, 2012, 6, 525-528.	15.6	146
6	Saturated-Absorption Cavity Ring-Down Spectroscopy. Physical Review Letters, 2010, 104, 110801.	2.9	129
7	Intracavity quartz-enhanced photoacoustic sensor. Applied Physics Letters, 2014, 104, .	1.5	115
8	Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nature Communications, 2012, 3, 1040.	5.8	105
9	Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica, 2016, 3, 385.	4.8	104
10	Quantum physics exploring gravity in the outer solar system: the SAGAS project. Experimental Astronomy, 2009, 23, 651-687.	1.6	101
11	Absolute Frequency Measurements of the23S1→23P0,1,2Atomic Helium Transitions around 1083Ânm. Physical Review Letters, 2004, 92, 023001.	2.9	96
12	Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring. Optics Express, 2014, 22, 28222.	1.7	93
13	Modulation Instability Induced Frequency Comb Generation in a Continuously Pumped Optical Parametric Oscillator. Physical Review Letters, 2018, 121, 093903.	2.9	89
14	Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. Optics Express, 2011, 19, 17996.	1.7	86
15	Real-time terahertz digital holography with a quantum cascade laser. Scientific Reports, 2015, 5, 13566.	1.6	85
16	Frequency comb generation in quadratic nonlinear media. Physical Review A, 2015, 91, .	1.0	84
17	Frequency Metrology of Helium around 1083Ânm and Determination of the Nuclear Charge Radius. Physical Review Letters, 2012, 108, 143001.	2.9	80
18	Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation. Optics Express, 2005, 13, 2377.	1.7	79

#	Article	IF	CITATIONS
19	Retrieval of phase relation and emission profile of quantum cascade laser frequency combs. Nature Photonics, 2019, 13, 562-568.	15.6	76
20	Direct Sensing in Liquids Using Whisperingâ€Galleryâ€Mode Droplet Resonators. Advanced Optical Materials, 2014, 2, 1155-1159.	3.6	70
21	Fully phase-stabilized quantum cascade laser frequency comb. Nature Communications, 2019, 10, 2938.	5.8	69
22	Mid-infrared fibre-based optical comb. New Journal of Physics, 2006, 8, 262-262.	1.2	68
23	In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography. Optics Express, 2004, 12, 1832.	1.7	67
24	Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference. Optics Letters, 2012, 37, 4811.	1.7	64
25	A 3.5-mW continuous-wave difference-frequency source around 3Âμm for sub-Doppler molecular spectroscopy. Applied Physics B: Lasers and Optics, 2005, 80, 141-145.	1.1	63
26	Frequency-comb-referenced quantum-cascade laser at 44 μm. Optics Letters, 2007, 32, 988.	1.7	63
27	Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy. Applied Physics Letters, 2013, 102, .	1.5	61
28	Optical comb generators for laser frequency measurement. Measurement Science and Technology, 2009, 20, 052001.	1.4	60
29	Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer. Optics Letters, 2005, 30, 997.	1.7	58
30	Lamb-dip-locked quantum cascade laser for comb-referenced IR absolute frequency measurements. Optics Express, 2008, 16, 11637.	1.7	56
31	Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications. Measurement Science and Technology, 2008, 19, 085306.	1.4	56
32	First Pure Frequency Measurement of an Optical Transition in Atomic Hydrogen: Better Determination of the Rydberg Constant. Europhysics Letters, 1993, 24, 635-640.	0.7	54
33	Rotational far infrared spectrum of 13CO. Journal of Molecular Spectroscopy, 1990, 143, 304-310.	0.4	52
34	Absolute frequency measurement of molecular transitions by a direct link to a comb generated around 3-µm. Optics Express, 2008, 16, 8242.	1.7	52
35	Direct link of a mid-infrared QCL to a frequency comb by optical injection. Optics Letters, 2012, 37, 1011.	1.7	52
36	Frequency-Comb-Assisted Terahertz Quantum Cascade Laser Spectroscopy. Physical Review X, 2014, 4, .	2.8	52

#	Article	IF	CITATIONS
37	Fiber Bragg Grating Sensor for Electric Field Measurement in the End Windings of High-Voltage Electric Machines. IEEE Transactions on Industrial Electronics, 2016, 63, 2796-2802.	5.2	51
38	Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching. Applied Physics Letters, 2005, 87, 233106.	1.5	49
39	Frequency modulation spectroscopy by means of quantum-cascade lasers. Applied Physics B: Lasers and Optics, 2006, 85, 223-229.	1.1	49
40	THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing. Sensors, 2013, 13, 3331-3340.	2.1	49
41	QCL-based frequency metrology from the mid-infrared to the THz range: a review. Nanophotonics, 2019, 8, 181-204.	2.9	49
42	Ultra-stable, widely tunable and absolutely linked mid-IR coherent source. Optics Express, 2009, 17, 9582.	1.7	48
43	Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 45μm. Optics Letters, 2010, 35, 3616.	1.7	47
44	High-coherence mid-infrared frequency comb. Optics Express, 2013, 21, 28877.	1.7	47
45	Present status of the fine-structure frequencies of the 23P helium level. Canadian Journal of Physics, 2005, 83, 301-310.	0.4	46
46	Localized strain sensing with fiber Bragg-grating ring cavities. Optics Express, 2013, 21, 29435.	1.7	46
47	Terahertz Frequency Metrology for Spectroscopic Applications: a Review. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38, 1289-1315.	1.2	46
48	Common-clock very long baseline interferometry using a coherent optical fiber link. Optica, 2020, 7, 1031.	4.8	46
49	Direct generation of optical frequency combs in χ ⁽²⁾ nonlinear cavities. Nanophotonics, 2016, 5, 316-331.	2.9	44
50	Optical Fiber Sensing Based on Reflection Laser Spectroscopy. Sensors, 2010, 10, 1823-1845.	2.1	41
51	Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy. Optics Express, 2012, 20, 9178.	1.7	41
52	High finesse optical cavity coupled with a quartz-enhanced photoacoustic spectroscopic sensor. Analyst, The, 2015, 140, 736-743.	1.7	41
53	High Dynamic Range, Heterogeneous, Terahertz Quantum Cascade Lasers Featuring Thermally Tunable Frequency Comb Operation over a Broad Current Range. ACS Photonics, 2019, 6, 73-78.	3.2	41
54	Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography. Optics Express, 2003, 11, 392.	1.7	40

#	Article	IF	CITATIONS
55	Ferroelectric Crystals for Photonic Applications. Springer Series in Materials Science, 2009, , .	0.4	40
56	Frequency-Noise Dynamics of Mid-Infrared Quantum Cascade Lasers. IEEE Journal of Quantum Electronics, 2011, 47, 984-988.	1.0	40
57	Quantum cascade laser based hybrid dual comb spectrometer. Communications Physics, 2020, 3, .	2.0	40
58	First Pure Frequency Measurement of an Optical Transition in Helium: Lamb Shift of the23S1Metastable Level. Physical Review Letters, 1994, 73, 42-45.	2.9	39
59	Frequency stability characterization of a quantum cascade laser frequency comb. Laser and Photonics Reviews, 2016, 10, 623-630.	4.4	39
60	Microcavity‣tabilized Quantum Cascade Laser. Laser and Photonics Reviews, 2016, 10, 153-157.	4.4	39
61	Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy. Optics Letters, 2014, 39, 5050.	1.7	38
62	High-precision molecular spectroscopy in the mid-infrared using quantum cascade lasers. Applied Physics B: Lasers and Optics, 2019, 125, 1.	1.1	38
63	A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6Âμm. Applied Physics B: Lasers and Optics, 2015, 119, 21-27.	1.1	37
64	The v ₃ band of ¹⁴ C ¹⁶ O ₂ molecule measured by optical-frequency-comb-assisted cavity ring-down spectroscopy. Molecular Physics, 2011, 109, 2267-2272.	0.8	36
65	The pure rotation spectrum of HBr in the submillimeter-wave region. Journal of Molecular Spectroscopy, 1991, 148, 86-92.	0.4	35
66	On the origin of internal field in Lithium Niobate crystals directly observed by digital holography. Optics Express, 2005, 13, 5416.	1.7	35
67	Remote sensing of volcanic gases with a DFB-laser-based fiber spectrometer. Applied Physics B: Lasers and Optics, 2000, 70, 467-470.	1.1	34
68	Surface topography of microstructures in lithium niobate by digital holographic microscopy. Measurement Science and Technology, 2004, 15, 961-968.	1.4	34
69	Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 Aµm. Optics Express, 2006, 14, 1304.	1.7	34
70	Surface plasmon resonance optical cavity enhanced refractive index sensing. Optics Letters, 2013, 38, 1951.	1.7	34
71	Search for Exchange-Antisymmetric States for Spin-0 Particles at the10â^'11Level. Physical Review Letters, 2001, 86, 1919-1922.	2.9	33
72	Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation. Science Advances, 2017, 3, e1603317.	4.7	33

#	Article	IF	CITATIONS
73	Measurement of the thermal expansion coefficients of ferroelectric crystals by a moir \tilde{A} © interferometer. Optics Communications, 2007, 277, 14-18.	1.0	32
74	Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range. Measurement Science and Technology, 2014, 25, 012001.	1.4	32
75	Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals. Optics Letters, 2016, 41, 5114.	1.7	32
76	Stimulated Brillouin Cavity Optomechanics in Liquid Droplets. Physical Review Letters, 2018, 120, 073902.	2.9	32
77	Difference-frequency generation in PPLN at 4.25Âμm: an analysis of sensitivity limits for DFG spectrometers. Applied Physics B: Lasers and Optics, 2000, 70, 747-750.	1.1	31
78	Saturated-absorption spectroscopy with low-power difference-frequency radiation. Optics Letters, 2000, 25, 350.	1.7	31
79	Power-boosted difference-frequency source for high-resolution infrared spectroscopy. Applied Physics B: Lasers and Optics, 2003, 76, 473-477.	1.1	31
80	Tunable two-dimensional hexagonal phase array in domain-engineered Z-cut lithium niobate crystal. Optics Letters, 2006, 31, 3164.	1.7	31
81	Optical Frequency Combs in Quadratically Nonlinear Resonators. Micromachines, 2020, 11, 230.	1.4	31
82	Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3Âμm. Applied Physics B: Lasers and Optics, 2006, 85, 219-222.	1.1	30
83	Matter wave explorer of gravity (MWXG). Experimental Astronomy, 2009, 23, 611-649.	1.6	30
84	Doppler-free polarization spectroscopy with a quantum cascade laser at 43 µm. Optics Express, 2009, 17, 7440.	1.7	30
85	Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3â€,μm. Journal of Chemical Physics, 2010, 133, 154317.	1.2	30
86	Optical Detection of Radiocarbon Dioxide: First Results and AMS Intercomparison. Radiocarbon, 2013, 55, 213-223.	0.8	30
87	Frequency-comb-referenced mid-IR sources for next-generation environmental sensors. Applied Physics B: Lasers and Optics, 2011, 102, 255-269.	1.1	29
88	Tunable far infrared spectroscopy of 16O3 ozone. Journal of Molecular Spectroscopy, 1992, 152, 256-259.	0.4	28
89	Precise experimental test of models for the breakdown of the Born-Oppenheimer separation: The rotational spectra of isotopic variants of lithium hydride. Physical Review A, 1995, 52, 1954-1960.	1.0	28
90	A diode-laser-based spectrometer for in-situ measurements of volcanic gases. Applied Physics B: Lasers and Optics, 2004, 78, 235-240.	1.1	28

6

#	Article	IF	CITATIONS
91	Theory of saturated-absorption cavity ring-down: radiocarbon dioxide detection, a case study. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2223.	0.9	28
92	Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas. Applied Physics B: Lasers and Optics, 1996, 63, 135-140.	1.1	27
93	The ground state spectroscopic parameters and molecular geometry of SbH3. Journal of Chemical Physics, 1998, 109, 997-1003.	1.2	27
94	Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO_3. Optics Letters, 2009, 34, 1348.	1.7	27
95	Two-dimensional mapping of electro-optic phase retardation in lithium niobate crystals by digital holography. Optics Letters, 2005, 30, 1671.	1.7	26
96	Interrogation of fiber Bragg-grating resonators by polarization-spectroscopy laser-frequency locking. Optics Express, 2007, 15, 3715.	1.7	26
97	Fundamental limits in high-Q droplet microresonators. Scientific Reports, 2017, 7, 41997.	1.6	26
98	Low-power Lamb-dip spectroscopy of very weak CO_2 transitions near 425 µm. Optics Letters, 2002, 27, 1256.	1.7	25
99	Hyperfine structure and isotope shift in the far-infrared ground-state transitions of atomic oxygen. Physical Review A, 1993, 48, 3757-3760.	1.0	24
100	Cavity-enhanced generation of 6 W cw second-harmonic power at 532 nm in periodically-poled MgO:LiTaO_3. Optics Express, 2010, 18, 10985.	1.7	24
101	Sensitivity enhancement of off-axis ICOS using wavelength modulation. Applied Physics B: Lasers and Optics, 2012, 108, 353-359.	1.1	24
102	Absolute frequency measurements of CO ₂ transitions at 4.3 μm with a comb-referenced quantum cascade laser. Molecular Physics, 2013, 111, 2041-2045.	0.8	24
103	Bow-Tie Cavity for Terahertz Radiation. Photonics, 2019, 6, 1.	0.9	24
104	Accurate frequency measurements for H_2O and ^16O_3 in the 119-cm^â~'1 OH atmospheric window. Applied Optics, 1997, 36, 8526.	2.1	23
105	Power amplifier for 1083 nm using ytterbium doped fibre. Optics Communications, 1997, 136, 243-246.	1.0	23
106	Amplitude and phase reconstruction of photorefractive spatial bright-soliton in LiNbO_3 during its dynamic formation by digital holography. Optics Express, 2007, 15, 8243.	1.7	23
107	Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam. Physical Chemistry Chemical Physics, 2016, 18, 16715-16720.	1.3	23
108	Measuring molecular frequencies in the 1–10 μm range at 11-digits accuracy. Scientific Reports, 2017, 7, 12780.	1.6	22

#	Article	IF	CITATIONS
109	Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings. Measurement Science and Technology, 2010, 21, 094010.	1.4	21
110	External ring-cavity quantum cascade lasers. Applied Physics Letters, 2013, 102, .	1.5	21
111	Detection of a 2.8 THz quantum cascade laser with a semiconductor nanowire field-effect transistor coupled to a bow-tie antenna. Applied Physics Letters, 2014, 104, .	1.5	21
112	Terahertz Quantum Cascade Lasers as Enabling Quantum Technology. Advanced Quantum Technologies, 2022, 5, 2100082.	1.8	21
113	Far-infrared self-broadening in methylcyanide: Absorber-perturber resonance. Physical Review A, 1992, 45, 6443-6450.	1.0	20
114	Investigation of electric internal field in congruent LiNbO3 by electro-optic effect. Applied Physics Letters, 2004, 85, 5652-5654.	1.5	20
115	Off-axis integrated-cavity-output spectroscopy for trace-gas concentration measurements: modeling and performance. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1938.	0.9	20
116	Mid-infrared tunable two-dimensional Talbot array illuminator. Applied Physics Letters, 2009, 94, 121105.	1.5	20
117	Mid-infrared digital holography and holographic interferometry with a tunable quantum cascade laser. Optics Letters, 2014, 39, 4843.	1.7	20
118	Improved sensitivity of tunable far-infrared spectroscopy: application to the detection of HBr in the $\hat{1}/_2$ = 1 state. Applied Optics, 1997, 36, 5822.	2.1	19
119	Quantitative diode laser absorption spectroscopy near 2 μm with high precision measurements of CO2 concentration. Review of Scientific Instruments, 2001, 72, 4228-4233.	0.6	19
120	A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy. Molecular Physics, 2012, 110, 2103-2109.	0.8	19
121	Detecting ionizing radiation with optical fibers down to biomedical doses. Applied Physics Letters, 2013, 103, .	1.5	19
122	High-speed multi-THz-range mode-hop-free tunable mid-IR laser spectrometer. Optics Letters, 2013, 38, 1972.	1.7	19
123	Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing. Sensors, 2016, 16, 238.	2.1	19
124	Laboratory measurements of rotational transitions of lithium hydride in the far-infrared. Astrophysical Journal, 1994, 424, 507.	1.6	19
125	Pure rotational spectrum of hydrogen deuteride by far-infrared Fourier transform spectroscopy. Astrophysical Journal, 1991, 378, L29.	1.6	19
126	Toward new frontiers for terahertz quantum cascade laser frequency combs. Nanophotonics, 2020, 10, 187-194.	2.9	19

#	Article	IF	CITATIONS
127	Title is missing!. European Physical Journal D, 2002, 19, 327-331.	0.6	19
128	A comb-referenced difference-frequency spectrometer for cavity ring-down spectroscopy in the 4.5 Âμm region. Journal of Optics, 2006, 8, S490-S493.	1.5	18
129	Phase noise analysis of a 10 Watt Yb-doped fibre amplifier seeded by a 1-Hz-linewidth laser. Optics Express, 2013, 21, 14618.	1.7	18
130	Tracing part-per-billion line shifts with direct-frequency-comb Vernier spectroscopy. Physical Review A, 2015, 91, .	1.0	18
131	Waveguided Approach for Difference Frequency Generation of Broadly-Tunable Continuous-Wave Terahertz Radiation. Applied Sciences (Switzerland), 2018, 8, 2374.	1.3	18
132	Liquid Droplet Microresonators. Sensors, 2019, 19, 473.	2.1	18
133	The Rotational Spectrum of CHF3 in the Submillimeter-Wave and Far-Infrared Region: Observation of the K = 3 Line Splitting. Journal of Molecular Spectroscopy, 1994, 163, 521-528.	0.4	17
134	Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540–1550 nm wavelength interval. Applied Physics Letters, 1997, 71, 2731-2733.	1.5	17
135	Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques. Journal of Optics, 2006, 8, S507-S513.	1.5	17
136	Control of lateral domain spreading in congruent lithium niobate by selective proton exchange. Applied Physics Letters, 2006, 89, 032902.	1.5	17
137	Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization. Optics Letters, 2015, 40, 4743.	1.7	17
138	Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser. Applied Physics Letters, 2015, 106, .	1.5	17
139	Mid-infrared homodyne balanced detector for quantum light characterization. Optics Express, 2021, 29, 14536.	1.7	17
140	The submillimeter rotation spectrum of DCl. Journal of Molecular Spectroscopy, 1992, 152, 55-61.	0.4	16
141	Line-Mixing Effects in the RotationalrQ-Branches of16O3Perturbed by N2and O2. Journal of Molecular Spectroscopy, 1996, 175, 429-440.	0.4	16
142	Tunable frequency-controlled laser source in the near ultraviolet based on doubling of a semiconductor diode laser. Applied Physics B: Lasers and Optics, 1996, 62, 333-338.	1.1	16
143	A Mach–Zehnder interferometric system for measuring the refractive indices of uniaxial crystals. Optics Communications, 2002, 202, 9-15.	1.0	16
144	In situvisualization of domain kinetics in flux grown KTiOPO4 by digital holography. Journal of Applied Physics, 2007, 102, 064105.	1.1	16

#	Article	IF	CITATIONS
145	Testing the validity of Bose-Einstein statistics in molecules. Physical Review A, 2015, 92, .	1.0	16
146	Resonant enhancement of plasmonic nanostructured fiber optic sensors. Sensors and Actuators B: Chemical, 2018, 273, 1587-1592.	4.0	16
147	Unveiling quantum-limited operation of interband cascade lasers. APL Photonics, 2020, 5, .	3.0	16
148	Biogenic Fraction Determination in Fuel Blends by Laserâ€Based ¹⁴ CO ₂ Detection. Advanced Photonics Research, 2021, 2, 2000069.	1.7	16
149	Stark and Frequency Measurements in the FIR Spectrum of H2O2. Journal of Molecular Spectroscopy, 1996, 177, 115-123.	0.4	15
150	Spatial Mode Control of Radiation Generated by Frequency Difference in Periodically Poled Crystals. Physical Review Letters, 2001, 87, 113901.	2.9	15
151	Quantum cascade lasers for high-resolution spectroscopy. Optical Engineering, 2010, 49, 111122.	0.5	15
152	Assessing the time constancy of the proton-to-electron mass ratio by precision ro-vibrational spectroscopy of a cold molecular beam. Journal of Molecular Spectroscopy, 2014, 300, 116-123.	0.4	15
153	Lamb-dip spectroscopy of buffer-gas-cooled molecules. Optica, 2019, 6, 436.	4.8	15
154	Pressure Broadening of the 2.4978-THz Rotational Lines of HO2 by N2 and O2. Journal of Molecular Spectroscopy, 1994, 163, 67-70.	0.4	14
155	Precise measurement of molecular dipole moments with a tunable far-infrared Stark spectrometer: application to HOCl. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 1645.	0.9	14
156	Detection of H_2O and CO_2 with distributed feedback diode lasers: measurement of broadening coefficients and assessment of the accuracy levels for volcanic monitoring. Applied Optics, 1997, 36, 9481.	2.1	14
157	Sensitive detection of methane and nitrous oxide isotopomers using a continuous wave quantum cascade laser. European Physical Journal D, 2002, 19, 327-331.	0.6	14
158	Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities. Applied Physics Letters, 2013, 102, 201116.	1.5	14
159	Laser-frequency locking to a whispering-gallery-mode cavity by spatial interference of scattered light. Optics Letters, 2016, 41, 650.	1.7	14
160	Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers. Applied Sciences (Switzerland), 2021, 11, 1416.	1.3	14
161	Comparison between MIM and Schottky diodes as harmonic mixers for visible lasers and microwave sources. Optics Communications, 1994, 109, 428-434.	1.0	13
162	Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083Ânm. Applied Physics B: Lasers and Optics, 2000, 70, 763-768.	1.1	13

#	Article	IF	CITATIONS
163	High-Q resonant cavities for terahertz quantum cascade lasers. Optics Express, 2015, 23, 3751.	1.7	13
164	Modeling and measuring the quality factor of whispering gallery mode resonators. Applied Physics B: Lasers and Optics, 2018, 124, 1.	1.1	13
165	A self-operating broadband spectrometer on a droplet. Nature Communications, 2020, 11, 2263.	5.8	13
166	Absolute frequency stabilization of a tunable Tm:Ho:YAG laser to the HBr P(12) line at 2097 nm. Optics Letters, 2000, 25, 1702.	1.7	12
167	High-stability diode-laser-based frequency reference at 1083 nm with iodine lines at 5415 nm. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 692.	0.9	12
168	Optical methods for monitoring of volcanoes: techniques and new perspectives. Journal of Volcanology and Geothermal Research, 2001, 109, 235-245.	0.8	12
169	Optical frequency comb assisted laser system for multiplex precision spectroscopy. Optics Express, 2011, 19, 3155.	1.7	12
170	Absolute frequency measurements of CHF_3 Doppler-free ro-vibrational transitions at 86  μm. Optics Letters, 2017, 42, 1911.	1.7	12
171	Room-Temperature Continuous-Wave Frequency-Referenced Spectrometer upÂtoÂ7.5ÂTHz. Physical Review Applied, 2018, 10, .	1.5	12
172	Surface-plasmon optical-heterodyne clock biosensor. Sensors and Actuators B: Chemical, 2018, 273, 336-341.	4.0	12
173	Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source. Optics Communications, 2000, 176, 453-458.	1.0	11
174	Generation of tunable green radiation in bulk periodically poled KTiOPO4. Optics and Lasers in Engineering, 2002, 37, 553-563.	2.0	11
175	Visualization of optical deflection and switching operations by a domain-engineered-based LiNbO_3 electro-optic device. Optics Express, 2003, 11, 1212.	1.7	11
176	Double-face and submicron two-dimensional domain patterning in congruent lithium niobate. IEEE Photonics Technology Letters, 2006, 18, 541-543.	1.3	11
177	Controlling and Phaseâ€Locking a THz Quantum Cascade Laser Frequency Comb by Small Optical Frequency Tuning. Laser and Photonics Reviews, 2021, 15, 2000417.	4.4	11
178	Analog FM free-space optical communication based on a mid-infrared quantum cascade laser frequency comb. Optics Express, 2022, 30, 10217.	1.7	11
179	Super-Resonant Intracavity Coherent Absorption. Scientific Reports, 2016, 6, 28947.	1.6	10
180	Heterodyning of AlGaAs lasers: direct frequency measurement of the isotope shift in the oxygen atom. Optics Letters, 1992, 17, 148.	1.7	9

#	Article	IF	CITATIONS
181	High-sensitivity detection of the rotation spectrum of HCl in the $v = 1$ state by tunable FIR spectroscopy. Chemical Physics Letters, 1997, 273, 253-258.	1.2	9
182	Noise characterization of a coherent tunable far infrared spectrometer. Review of Scientific Instruments, 1998, 69, 372-376.	0.6	9
183	High-sensitivity spectroscopy of CO2 around 4.2514/4m with difference-frequency radiation. Optics and Lasers in Engineering, 2002, 37, 143-158.	2.0	9
184	Thickness Measurement of Thin Transparent Plates With a Broad-Band Wavelength Scanning Interferometer. IEEE Photonics Technology Letters, 2004, 16, 1349-1351.	1.3	9
185	Investigation of optical birefringence at ferroelectric domain wall in LiNbO3 by phase-shift polarimetry. Applied Physics Letters, 2006, 88, 151918.	1.5	9
186	Response to Comment on "Probing the Ultimate Limit of Fiber-Optic Strain Sensing― Science, 2012, 335, 286-286.	6.0	9
187	Frequency-comb-assisted precision laser spectroscopy of CHF3 around 8.6 <i>μ</i> m. Journal of Chemical Physics, 2015, 143, 234202.	1.2	9
188	LOW-TEMPERATURE SPECTROSCOPY OF THE ¹² C ₂ H ₂ (ï ₁ +)	Ţį ĘTQq0	0 ₉ 0 rgBT /O
189	Opto-mechanical oscillator in a nanoliter droplet. Optics Letters, 2018, 43, 3473.	1.7	9
190	Air-Broadening of Rotational Lines of Ozone in the 1.5-THz Region. Journal of Molecular Spectroscopy, 1993, 161, 581-584.	0.4	8
191	Spectroscopic observation of the Faraday effect in the far infrared. Optics Letters, 1997, 22, 1896.	1.7	8
192	Optical Detection of Radiocarbon Dioxide: First Results and AMS Intercomparison. Radiocarbon, 2013, 55, .	0.8	8
193	Ionizing Radiation Detectors Based on Ge-Doped Optical Fibers Inserted in Resonant Cavities. Sensors, 2015, 15, 4242-4252.	2.1	8
194	Shaping the spectrum of a down-converted mid-infrared frequency comb. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2287.	0.9	8

195	Laser-Based Measurements for Time and Frequency Domain Applications. , 0, , .		8
196	Determination of the Rydberg constant by direct frequency measurement. IEEE Transactions on Instrumentation and Measurement, 1995, 44, 568-571.	2.4	7
197	High-resolution Fourier transform spectroscopy of the ν1 fundamental band of nitrosyl bromide. Chemical Physics Letters, 1993, 214, 531-535.	1.2	6

198Frequency doubling of a fibre-amplified 1083 nm DBR laser. European Physical Journal D, 1998, 3, 211.0.66

#	Article	IF	CITATIONS
199	Magnetic-field effects on molecular transitions in the far-infrared region: prospects for more-sensitive spectrometers. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 301.	0.9	6
200	Generation of tunable far-infrared radiation with a quantum cascade laser. Optics Letters, 2002, 27, 521.	1.7	6
201	High Resolution X-Ray Characterization of Sub-Micron Periodic Domain Structures in Lithium Niobate Crystals. Ferroelectrics, 2007, 352, 25-34.	0.3	6
202	Non-collinear quasi phase matching and annular profiles in difference frequency generation with focused Gaussian beams. Optics Express, 2008, 16, 8056.	1.7	6
203	Versatile mid-infrared frequency-comb referenced sub-Doppler spectrometer. APL Photonics, 2018, 3, .	3.0	6
204	Light pressure in droplet micro-resonators excited by free-space scattering. Optics Letters, 2021, 46, 3111.	1.7	6
205	Far-infrared Fourier transform spectroscopy of (C-12)(0-18). Astrophysical Journal, 1991, 370, L53.	1.6	6
206	Precise radiocarbon determination in radioactive waste by a laser-based spectroscopic technique. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
207	<title>Optimization of partial coherence for half-micron i-line lithography</title> . , 1991, , .		5
208	Far-Infrared Collisional Lineshapes of Lithium Hydride and Deuteride Perturbed by H2 and D2. Journal of Molecular Spectroscopy, 1994, 163, 510-514.	0.4	5
209	Accurate gas diagnostics for sealed-off CO/sub 2/ lasers using near-infrared DFB semiconductor lasers. IEEE Journal of Quantum Electronics, 1998, 34, 949-954.	1.0	5
210	Gas concentration measurements with DFB lasers to monitor volcanic activity. , 1998, 3491, 783.		5
211	Continuous in situ measurements of volcanic gases with a diode-laser-based spectrometer: CO2 and H2O concentration and soil degassing at Vulcano (Aeolian islands: Italy). Geochemical Transactions, 2007, 8, 5.	1.8	5
212	3-axis accelerometer based on lasers locked to π-shifted fibre Bragg gratings. Proceedings of SPIE, 2009, , .	0.8	5
213	All-Optical Radiocarbon Dating. Optics and Photonics News, 2012, 23, 52.	0.4	5
214	Two-tone frequency-modulation spectroscopy in off-axis cavity. Optics Letters, 2013, 38, 4625.	1.7	5
215	High-sensitivity ring-down evanescent-wave sensing in fiber resonators. Optics Letters, 2014, 39, 5725.	1.7	5
216	Mapping terahertz waves. Nature Photonics, 2015, 9, 147-148.	15.6	5

#	Article	IF	CITATIONS
217	Whispering gallery mode stabilization of quantum cascade lasers for infrared sensing and spectroscopy. , 2017, , .		5
218	Real-time phase-contrast analysis of domain switching in lithium niobate by digital holography. , 2004, , .		4
219	Fabrication of Sub-Micron Period Surface Structures in LiNbO3. Ferroelectrics, 2007, 352, 72-77.	0.3	4
220	Radiation dosimetry with fiber Bragg gratings. , 2014, , .		4
221	Quantum Simulating the Electron Transport in Quantum Cascade Laser Structures. Advanced Quantum Technologies, 2021, 4, 2100044.	1.8	4
222	Infrared Comb Spectroscopy of Buffer-Gas-Cooled Molecules: Toward Absolute Frequency Metrology of Cold Acetylene. International Journal of Molecular Sciences, 2021, 22, 250.	1.8	4
223	Absolute frequency stabilization of a QCL at 8.6  µm by modulation transfer spectroscopy. Optics Letters, 2020, 45, 4948.	1.7	4
224	Remote Measurements of Volcanic Gases With a Diode-Laser-Based Spectrometer. Optics and Photonics News, 2000, 11, 44.	0.4	3
225	Spectral characterization of integrated acousto-optic tunable filters by means of laser frequency modulation spectroscopy. Applied Optics, 2006, 45, 9176.	2.1	3
226	An interferometric demodulation method for visualizing and determining quasi-static strain by FBG sensors. Measurement Science and Technology, 2006, 17, 1485-1490.	1.4	3
227	Self-organized and high-density filamentous nanodomain patterns fabricated in lithium niobate by discharge poling. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2008, 7, 039701.	1.0	3
228	Functional periodically poled-crystals for powerful intracavity CW difference-frequency-generation of widely tunable high spectral purity IR radiation. , 2008, , .		3
229	Twenty-first Colloquium on High-Resolution Molecular Spectroscopy. Molecular Physics, 2010, 108, 675-676.	0.8	3
230	Simulation of Dicke-narrowed molecular spectra recorded by off-axis high-finesse optical cavities. Molecular Physics, 2010, 108, 749-755.	0.8	3
231	22nd Colloquium on High Resolution Molecular Spectroscopy: Special Issue dedicated to Gianfranco Di Lonardo. Molecular Physics, 2011, 109, 2069-2070.	0.8	3
232	A narrow-linewidth, frequency-stabilized OPO for sub-Doppler molecular spectroscopy around 3 l̂¼m. , 2012, , .		3
233	Theoretical study of the Fourier-transform analysis of heterodyne comb-emission measurements. Physical Review A, 2021, 104, .	1.0	3
234	Coherent FIR spectroscopy of molecules of atmospheric interest. Infrared Physics and Technology, 1995, 36, 37-44.	1.3	2

#	Article	IF	CITATIONS
235	A method for the determination of three-dimensional velocity fields from holographic images. Optics and Laser Technology, 1995, 27, 103-106.	2.2	2
236	Optical methods in Earth Sciences. Optics and Lasers in Engineering, 2002, 37, 87-89.	2.0	2
237	Difference-frequency generation as a precise tool for high-resolution spectroscopy. , 2003, , .		2
238	Investigation of internal electric field in LiNbO 3 crystal with two anti-parallel ferroelectric domains by interferometric technique. , 2004, 5560, 9.		2
239	Infrared Precision Spectroscopy Using Femtosecond-Laser-Based Optical Frequency-Comb Synthesizers. , 2005, , 109-132.		2
240	Fabrication of 2D sub-micron structures in lithium niobate for photonic crystal applications. , 2005, , .		2
241	Measurement of thermal expansion and thermo-optic coefficients in LiNbO 3 and KTiOPO 4 crystals using dual-interferometric techniques. , 2006, 6341, 534.		2
242	Performance evaluation of fiber Bragg grating sensors by digital holographic technique, strain gauge measurement. Optics and Lasers in Engineering, 2007, 45, 385-389.	2.0	2
243	Quiet Cascade: Measuring QCL Intrinsic Linewidth. Optics and Photonics News, 2010, 21, 32.	0.4	2
244	Narrow linewidth quantum cascade lasers as ultra-sensitive probes of molecules. , 2011, , .		2
245	Investigating the resonance spectrum of optical frequency combs in fiber-optic cavities. Optics Express, 2013, 21, 13785.	1.7	2
246	LIFT-the Italian link for time and frequency. , 2013, , .		2
247	THz spectroscopy with an absolute frequency scale by a QCL phase-locked to a THz frequency comb. , 2013, , .		2
248	Cavity-enhanced surface-plasmon resonance sensing: modeling and performance. Measurement Science and Technology, 2014, 25, 015205.	1.4	2
249	Narrow-linewidth ultra-broadband terahertz sources based on difference-frequency generation in mid-infrared quantum cascade lasers. , 2017, , .		2
250	Frequency-comb-assisted absolute calibration and linestrength of H12C13CH ro-vibrational transitions in the 211/23 band. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 206, 31-35.	1.1	2
251	Rovibrational fine structure and transition dipole moment of CF3H by frequency-comb-assisted saturated spectroscopy at 8.6µm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 217, 373-379.	1.1	2
252	High Precision Measurements on Helium at 1083 nm. Lecture Notes in Physics, 2001, , 314-327.	0.3	2

#	Article	IF	CITATIONS
253	Fiber-Optic Resonators for Strain-Acoustic Sensing and Chemical Spectroscopy. Springer Series in Optical Sciences, 2014, , 463-484.	0.5	2
254	EXTENDING THE OPTICAL COMB SYNTHESIZER TO THE INFRARED: FROM He AT 1.083 <i>î¼</i> m TO CO ₂ AT 4.2 <i>î¼</i> m. , 2004, , .		2
255	Spectroscopic tests of the symmetrization postulate and of the statistics for nuclei in molecules. AIP Conference Proceedings, 2000, , .	0.3	1
256	Investigation on poling of lithium niobate patterned by interference lithography. , 2003, , .		1
257	Investigation on overpoled lithium niobate patterned crystal. , 2003, , .		1
258	Mach-Zehnder interferometric system for measuring the refractive indices of uniaxial crystals. , 2003, , .		1
259	Electro-optically controlled switching and deflection in domain-engineered LiNbO 3. , 2003, , .		1
260	Two-dimensional characterization of relief microstructures in lithium niobate through digital holographic microscopy. , 0, , .		1
261	2D lithium niobate microstructures: fabrication, characterization, and applications. , 2006, 6185, 418.		1
262	Ultra-high sensitivity frequency-comb-referenced multi-parametric sensors based on 1-D photonic components. , 2008, , .		1
263	Optical characterization of erbium doped LiNbO3 poling properties. Journal of Applied Physics, 2008, 104, 014103.	1.1	1
264	Frequency metrology with quantum cascade lasers. Proceedings of SPIE, 2009, , .	0.8	1
265	Optical-frequency-comb stabilised lasers for interrogation of fibre-resonator strain sensors. Proceedings of SPIE, 2009, , .	0.8	1
266	Optical detection of molecular species at sub-ppt concentration levels. , 2011, , .		1
267	Cavity and quartz enhanced photo-acoustic mid-IR sensor. , 2013, , .		1
268	Saturated-Absorption Cavity Ring-Down (SCAR) for High-Sensitivity and High-Resolution Molecular Spectroscopy in the Mid IR. Springer Series in Optical Sciences, 2014, , 143-162.	0.5	1
269	Quartz-enhanced photoacoustic sensors for H2S trace gas detection. , 2015, , .		1
270	Whispering-gallery mode resonator sensors based on liquid droplets. Proceedings of SPIE, 2016, , .	0.8	1

#	Article	IF	CITATIONS
271	Towards the full frequency stabilization of quantum cascade laser frequency combs. , 2017, , .		1
272	Approaching the transit time limit for high-precision spectroscopy on metastable CO around 6 μm. Physical Chemistry Chemical Physics, 2019, 21, 24506-24511.	1.3	1
273	Domain-Engineered Ferroelectric Crystals forÂNonlinear and Quantum Optics. Springer Series in Materials Science, 2009, , 285-306.	0.4	1
274	Frequency noise characterization of interband cascade lasers. , 2019, , .		1
275	Recent Developments in Laser Spectroscopy of Helium. , 1994, , .		0
276	Thickness measurement of thin transparent plates with a broadband wavelength-scanning interferometer. , 2004, 5458, 64.		0
277	Real-time monitoring of volcanic emissions with a laser-based fiber spectrometer. , 2004, , .		0
278	High-sensitivity and high-resolution trace gas detection by means of a mW-power DFG spectrometer around 3.2 μm. , 2004, , .		0
279	High spatial resolution interferometric analysis of internal field in lithium niobate (LiNbO 3). , 2005, 5911, 42.		0
280	Characterization and engineering of ferroelectric microstructures by interferometric methods. , 2005, , .		0
281	PRECISION SPECTROSCOPY OF HELIUM ATOM. , 2005, , .		0
282	Precision spectroscopy of Helium. AIP Conference Proceedings, 2005, , .	0.3	0
283	Schlieren imaging of inverted domains in congruent lithium niobate. , 0, , .		0
284	A 3.5-mW continuous-wave difference-frequency source around 3 ,um for sub-doppler molecular spectroscopy. , 0, , .		0
285	Frequency-comb based absolute measurement of infrared frequencies of atoms and molecules. , 0, , .		0
286	Double face two-dimensional domain engineering in congruent lithium niobate. , 0, , .		0
287	Interferometric measurement of thermal expansion coefficients and thermo-optic coefficients in ferroelectric crystals. , 2006, 6188, 163.		0
288	<title>Laser radio-frequency and cavity-enhanced interrogation techniques for strain sensing by fiber Bragg gratings</title> . , 2006, , .		0

#	Article	IF	CITATIONS
289	Engineering and characterization of ferroelectric microstructures for photonic crystal applications. , 2006, 6182, 24.		0
290	Mid-infrared frequency synthesizers: novel precise rulers for molecular spectroscopy. , 2007, , .		0
291	Referencing mid-IR radiation to an optical frequency comb. , 2007, , .		Ο
292	Fiber Bragg-grating (FBG) resonators for high-sensitivity multi-parameter sensing. , 2007, , .		0
293	Electro-Optic Modulated Phase Array in Hexagonally Poled Lithium Niobate for Flexible Array Illuminator Device. Ferroelectrics, 2007, 352, 94-99.	0.3	0
294	Laser-frequency locking techniques for high-sensitivity strain measurements by high-birefringence fiber Bragg gratings and resonators. Proceedings of SPIE, 2007, , .	0.8	0
295	Tunable electro-optical lithium niobate phase array for wavefront modulators. , 2007, , .		0
296	Photolithography by a tunable electro-optical lithium niobate phase array. Optoelectronics Letters, 2007, 3, 243-245.	0.4	0
297	Volume C: Advanced monitoring techniques and coherent sources. Optics and Lasers in Engineering, 2007, 45, 443.	2.0	0
298	An ultra-stable, widely tunable and Cs-traceable mid-IR coherent source. , 2009, , .		0
299	Comb-referenced spectroscopy with quantum cascade lasers. , 2009, , .		0
300	Saturated-Absorption Cavity Ring-Down Spectroscopy. , 2010, , .		0
301	Probing sensitivity limits by comb-based spectroscopic techniques. , 2011, , .		0
302	Optical-frequency-comb based interrogation of fiber resonators. Proceedings of SPIE, 2011, , .	0.8	0
303	External ring-cavity quantum cascade lasers for mode-locking and atmospheric sensing. , 2012, , .		0
304	Direct link of a mid-infrared quantum cascade laser to a frequency comb by optical injection. , 2012, , .		0
305	Phase-locking a THz quantum cascade laser to a THz comb through an all-optical beating. , 2012, , .		0

306 $\,$ $\,$ The intrinsic linewidth of a THz quantum cascade laser. , 2012, , .

0

#	Article	IF	CITATIONS
307	Detection of a 2.8 THz quantum cascade laser with a semiconductor nanowire FET. , 2013, , .		0
308	Optical cavity-enhanced surface plasmon resonance refractive index sensing. , 2013, , .		0
309	Quantum-limited linewidth in THz quantum cascade lasers. Proceedings of SPIE, 2013, , .	0.8	0
310	THz-comb-assisted molecular spectroscopy. , 2013, , .		0
311	Subkilohertz-narrowed, frequency/phase-locked mid-IR quantum cascade lasers for high-precision molecular spectroscopy. , 2013, , .		0
312	Atomic and molecular spectroscopy with optical-frequency-comb-referenced IR coherent sources. EPJ Web of Conferences, 2013, 57, 02003.	0.1	0
313	Towards Doppler-Free QCL-based Metrological THz Spectroscopy. , 2014, , .		0
314	High-Coherence Mid-Infrared Frequency Comb Generation and Applications. , 2014, , .		0
315	Intracavity Quartz-Enhanced Photoacoustic Sensor for Mid-Infrared Trace-Gas Detection. , 2014, , .		0
316	THz technologies for sensing and non-destructive testing. , 2014, , .		0
317	Sensitive strain measurements with a fiber Bragg-grating ring resonator. Proceedings of SPIE, 2014, , .	0.8	0
318	Frequency comb generation in continuously-pumped quadratic nonlinear media. , 2015, , .		0
319	QCL-based Metrological-grade THz Spectroscopy Tools. , 2015, , .		0
320	Quantum cascade laser THz metrology. Proceedings of SPIE, 2015, , .	0.8	0
321	Spectrally selective investigation on optical losses in multimode fibers with loop resonators. , 2015, , .		0
322	Mid-IR and terahertz digital holography based on quantum cascade lasers. , 2015, , .		0
323	Mid-infrared tunable, narrow-linewidth difference-frequency laser based on orientation-patterned gallium phosphide. Journal of Physics: Conference Series, 2017, 793, 012012.	0.3	0
324	Continuous-wave difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide (OP-GaP) crystals. , 2017, , .		0

#	Article	IF	CITATIONS
325	Radiocarbon measurements with mid-infrared SCAR spectroscopy. , 2017, , .		Ο
326	Broadband CW nonlinear generation for metrological grade terahertz spectroscopy. , 2017, , .		0
327	Probing and controlling the comb features of a THz QCL. , 2017, , .		0
328	Crystalline and liquid whispering gallery mode resonators for laser stabilization and sensing (Invited). , 2017, , .		0
329	Cavity Opto-Mechanics in Liquid Droplets. , 2019, , .		0
330	Experimental Observation of Optical Frequency Combs in Doubly Resonant Second Harmonic Generation. , 2019, , .		0
331	Absolute frequency metrology of the CHF3 8.6-µm ro-vibrational spectrum at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mo>â^'</mml:mo><ml:mn>11level lournal of Quantitative Spectroscopy and Padiative Transfer 2020 248 106963</ml:mn></mml:mrow></mml:msup></mml:math 	າl:mn> <td>ımî:mrow></td>	ımî:mrow>
332	A QCL-based metrological-grade source at 6 î¼m. Applied Physics B: Lasers and Optics, 2020, 126, 1.	1.1	0
333	Silicon-Based Multilayer Waveguides for Integrated Photonic Devices from the Near to Mid Infrared. Applied Sciences (Switzerland), 2021, 11, 1227.	1.3	0
334	From Atoms to Single Biomolecules Through Bose—Einstein Condensates: Un Saluto da Firenze per Theodor. , 2002, , 291-303.		0
335	Interferometric Technique for Characterization of Ferroelectric Crystals Properties and Microengineering Process. , 2006, , 514-521.		0
336	Towards Metrological Grade Mid-IR Quantum Cascade Laser Sources. , 2010, , .		0
337	The intrinsic linewidth of THz quantum cascade lasers. , 2012, , .		0
338	Frequency-comb assisted Laser Sources from the Mid-IR to the THz Range. , 2013, , .		0
339	High-Speed, Multi-THz-Range Mode-Hop-Free Tunable Mid-IR OPO Spectrometer. , 2013, , .		0
340	Broadband Fiber Dispersion Spectroscopy of Liquids with Optical Frequency Combs. , 2013, , .		0
341	High-Resolution Spectroscopy of the Methane ν23 Band in the 3.3 µm Range using Widely Tunable Single-Frequency Optical Parametric Oscillators. , 2013, , .		0
342	Subkilohertz-narrowed, Frequency/phase-locked Mid-IR Quantum Cascade Lasers for High-precision		0

² Molecular Spectroscopy. , 2013, , .

#	Article	IF	CITATIONS
343	THz Spectroscopy with an Absolute Frequency Scale by a QCL Phase-locked to a THz Frequency Comb. , 2013, , .		Ο
344	Novel Infrared Sources And Spectroscopic Techniques For Cutting Edge Environmental Metrology. , 2014, , .		0
345	Domain-Engineered Ferroelectric Crystals for Nonlinear and Quantum Optics. Springer Series in Materials Science, 2014, , 285-311.	0.4	0
346	Precise measurements of molecular lineshapes with direct comb spectroscopy. , 2014, , .		0
347	Sub-kHz-Linewidth Mid-infrared Optical Parametric Oscillator. , 2014, , .		Ο
348	Measuring part-per-billion line shifts and frequencies with direct-frequency-comb Vernier spectroscopy. , 2015, , .		0
349	QCL-Based Real-Time Terahertz Digital Holography. , 2016, , .		Ο
350	Spectroscopic Detection of Radiocarbon Dioxide at Parts-per-quadrillion Sensitivity. , 2016, , .		0
351	Measuring the frequency stability of a quantum cascade laser frequency comb. , 2016, , .		Ο
352	Microcavity-Stabilized Quantum Cascade Laser. , 2016, , .		0
353	Frequency comb generation in continuously pumped optical parametric oscillator. , 2017, , .		Ο
354	Saturated-Absorption Cavity Ring-Down Spectroscopy for Radiocarbon Measurements. , 2017, , .		0
355	Comb-referenced ultra-high sensitivity spectroscopic molecular detection by compact non-linear sources. , 2017, , .		0
356	Direct Measurement of the Phase Coherence of Comb Sources. , 2018, , .		0
357	Controlling QCLs for frequency metrology from the infrared to the THz range. , 2018, , .		0
358	Super-resonant coherent absorption sensing. , 2018, , .		0
359	Whispering gallery mode resonators for mid-IR quantum and interband cascade laser analysis and control. , 2018, , .		0
360	Metrological-grade tunable coherent source in the mid-infrared for molecular precision spectroscopy. , 2018, , .		0

#	Article	IF	CITATIONS
361	Surface scattering and opto-mechanical effects in droplet microresonators. , 2018, , .		Ο
362	Frequency comb generation in a continuously pumped optical parametric oscillator. , 2018, , .		0
363	THz frequency metrology. , 2019, , .		Ο
364	Quantum simulating electron transport in quantum cascade laser structures. , 2020, , .		0
365	Stabilizing chip-scale combs and infrared sources: a metrological view on the molecular world. , 2020, , .		0
366	Frequency noise of Interband Cascade Lasers. , 2020, , .		0
367	A 1800-km optical fiber link for metrology, geodesy, and clock comparison. , 2020, , .		0
368	Mid-infrared balanced detector for characterization of quantum light. , 2021, , .		0