Juan Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3979929/publications.pdf

Version: 2024-02-01

		159585	182427
53	4,745 citations	30	51
papers	citations	h-index	g-index
53	53	53	4410
all docs	docs citations	times ranked	citing authors
			- -

#	Article	lF	Citations
1	Hybridized Local and Charge-Transfer Excited-State Fluorophores through the Regulation of the Donor–Acceptor Torsional Angle for Highly Efficient Organic Light-Emitting Diodes. CCS Chemistry, 2022, 4, 1284-1294.	7.8	42
2	From para to ortho: Incarnating conventional TADF molecules into AIE-TADF molecules for highly-efficient non-doped OLEDs. Chemical Engineering Journal, 2022, 442, 136219.	12.7	10
3	AIE luminogens exhibiting thermally activated delayed fluorescence. , 2022, , 275-314.		0
4	Asymmetric Thermally Activated Delayed Fluorescence Materials Rendering High-performance OLEDs Through both Thermal Evaporation and Solution-processing. Chemical Research in Chinese Universities, 2022, 38, 1526-1531.	2.6	2
5	Asymmetric Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Red/Near-Infrared Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33606-33613.	8.0	14
6	A Multiâ€Stimuliâ€Responsive Molecule with Responses to Light, Oxygen, and Mechanical Stress through Flexible Tuning of Triplet Excitons. Advanced Optical Materials, 2021, 9, 2001550.	7.3	32
7	Sensitive and Repeatable Photoinduced Luminescent Radicals from A Simple Organic Crystal. Angewandte Chemie - International Edition, 2021, 60, 6367-6371.	13.8	46
8	Sulfonyldibenzene-based hole-transporting materials for efficient n-i-p perovskite solar cells. Science China Chemistry, 2021, 64, 127-133.	8.2	8
9	Sensitive and Repeatable Photoinduced Luminescent Radicals from A Simple Organic Crystal. Angewandte Chemie, 2021, 133, 6437-6441.	2.0	6
10	A color-tunable single-component luminescent molecule with multiple emission centers. Chemical Science, 2021, 12, 9201-9206.	7.4	32
11	Rigid Polyimides with Thermally Activated Delayed Fluorescence for Polymer Lightâ€Emitting Diodes with High External Quantum Efficiency up to 21 %. Angewandte Chemie - International Edition, 2021, 60, 7220-7226.	13.8	34
12	Rigid Polyimides with Thermally Activated Delayed Fluorescence for Polymer Lightâ€Emitting Diodes with High External Quantum Efficiency up to 21 %. Angewandte Chemie, 2021, 133, 7296-7302.	2.0	6
13	28â€2: <i>Invited Paper:</i> The Development of Highâ€Efficiency Pure Organic Lightâ€Emitting Materials and Highâ€Performance White OLEDs. Digest of Technical Papers SID International Symposium, 2021, 52, 353-356.	0.3	1
14	An Effective Strategy of Combining Surface Passivation and Secondary Grain Growth for Highly Efficient and Stable Perovskite Solar Cells. Small, 2021, 17, e2100678.	10.0	23
15	Dopantâ€Free Holeâ€Transporting Material with Enhanced Intermolecular Interaction for Efficient and Stable nâ€iâ€p Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100967.	19.5	51
16	Hybridized local and charge-transfer excited state fluorophores enabling organic light-emitting diodes with record high efficiencies close to 20%. Chemical Science, 2021, 12, 5171-5176.	7.4	66
17	Reversible and Continuous Color-Tunable Persistent Luminescence of Metal-Free Organic Materials by "Self―Interface Energy Transfer. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5073-5080.	8.0	45
18	Selective Expression of Chromophores in a Single Molecule: Soft Organic Crystals Exhibiting Fullâ€Colour Tunability and Dynamic Tripletâ€Exciton Behaviours. Angewandte Chemie, 2020, 132, 3768-3774.	2.0	24

#	Article	IF	CITATIONS
19	Selective Expression of Chromophores in a Single Molecule: Soft Organic Crystals Exhibiting Fullâ€Colour Tunability and Dynamic Tripletâ€Exciton Behaviours. Angewandte Chemie - International Edition, 2020, 59, 3739-3745.	13.8	128
20	Boosting the Quantum Efficiency of Ultralong Organic Phosphorescence up to 52 % via Intramolecular Halogen Bonding. Angewandte Chemie, 2020, 132, 17604-17608.	2.0	55
21	Asymmetric Sulfonyldibenzene-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells: Inspiration from Organic Thermally-Activated Delayed Fluorescence Molecules. , 2020, 2, 1093-1100.		16
22	Activating Versatile Mechanoluminescence in Organic Host–Guest Crystals by Controlling Exciton Transfer. Angewandte Chemie - International Edition, 2020, 59, 22645-22651.	13.8	31
23	Activating Versatile Mechanoluminescence in Organic Host–Guest Crystals by Controlling Exciton Transfer. Angewandte Chemie, 2020, 132, 22834-22840.	2.0	4
24	Preserving High-Efficiency Luminescence Characteristics of an Aggregation-Induced Emission-Active Fluorophore in Thermostable Amorphous Polymers. ACS Applied Materials & Emp; Interfaces, 2020, 12, 34198-34207.	8.0	20
25	Boosting the Quantum Efficiency of Ultralong Organic Phosphorescence up to 52 % via Intramolecular Halogen Bonding. Angewandte Chemie - International Edition, 2020, 59, 17451-17455.	13.8	253
26	Modulation of π-linkers in asymmetric thermally activated delayed fluorescence molecules enabling high performance OLEDs. Journal of Materials Chemistry C, 2020, 8, 3663-3668.	5.5	24
27	Enabling dynamic ultralong organic phosphorescence in molecular crystals through the synergy between intramolecular and intermolecular interactions. Journal of Materials Chemistry C, 2020, 8, 7384-7392.	5.5	27
28	Instrument-free and visual detection of organophosphorus pesticide using a smartphone by coupling aggregation-induced emission nanoparticle and two-dimension MnO2 nanoflake. Biosensors and Bioelectronics, 2020, 170, 112668.	10.1	46
29	An exceptionally flexible hydrogen-bonded organic framework with large-scale void regulation and adaptive guest accommodation abilities. Nature Communications, 2019, 10, 3074.	12.8	142
30	Performance enhancement in up-conversion nanoparticle-embedded perovskite solar cells by harvesting near-infrared sunlight. Materials Chemistry Frontiers, 2019, 3, 2058-2065.	5.9	23
31	A sterically hindered asymmetric D–A–D′ thermally activated delayed fluorescence emitter for highly efficient non-doped organic light-emitting diodes. Chemical Science, 2019, 10, 8129-8134.	7.4	102
32	Nondoped Red Fluorophores with Hybridized Local and Charge-Transfer State for High-Performance Fluorescent White Organic Light-Emitting Diodes. ACS Applied Materials & Emp; Interfaces, 2019, 11, 39026-39034.	8.0	55
33	The methylation effect in prolonging the pure organic room temperature phosphorescence lifetime. Chemical Science, 2019, 10, 179-184.	7.4	107
34	Simultaneous enhancement in performance and UV-light stability of organic–inorganic perovskite solar cells using a samarium-based down conversion material. Journal of Materials Chemistry A, 2019, 7, 322-329.	10.3	42
35	Two-photon-excited ultralong organic room temperature phosphorescence by dual-channel triplet harvesting. Chemical Science, 2019, 10, 7352-7357.	7.4	98
36	Achievement of persistent and efficient organic room-temperature phosphorescence with temperature-response by adjusting the proportion of excited-state configurations in coupled molecules. Journal of Materials Chemistry C, 2019, 7, 8250-8254.	5.5	20

#	Article	IF	CITATIONS
37	A promising europium-based down conversion material: organic–inorganic perovskite solar cells with high photovoltaic performance and UV-light stability. Journal of Materials Chemistry A, 2019, 7, 6467-6474.	10.3	43
38	Inorganic perovskite engineering through incorporation of a carboxylic acid containing ligand for performance enhancement in perovskite light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 14141-14147.	5.5	2
39	Tuning the organic persistent room-temperature phosphorescence through aggregated states. Journal of Materials Chemistry C, 2019, 7, 15219-15224.	5.5	25
40	Highly-Efficient Doped and Nondoped Organic Light-Emitting Diodes with External Quantum Efficiencies over 20% from a Multifunctional Green Thermally Activated Delayed Fluorescence Emitter. Journal of Physical Chemistry C, 2019, 123, 1015-1020.	3.1	42
41	Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale, 2018, 10, 5764-5792.	5.6	91
42	Flexible Multifunctional Aromatic Polyimide Film: Highly Efficient Photoluminescence, Resistive Switching Characteristic, and Electroluminescence. ACS Applied Materials & Enterfaces, 2018, 10, 11430-11435.	8.0	33
43	Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties. Materials Chemistry Frontiers, 2018, 2, 861-890.	5.9	339
44	Mechano-induced persistent room-temperature phosphorescence from purely organic molecules. Chemical Science, 2018, 9, 3782-3787.	7.4	97
45	Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration. Journal of Materials Chemistry C, 2018, 6, 4257-4264.	5.5	41
46	An efficient yellow thermally activated delayed fluorescence emitter with universal applications in both doped and non-doped organic light-emitting diodes. Materials Chemistry Frontiers, 2018, 2, 1017-1023.	5.9	39
47	Recent progress in the mechanofluorochromism of cyanoethylene derivatives with aggregation-induced emission. Journal of Materials Chemistry C, 2018, 6, 6327-6353.	5.5	198
48	Recent progress in the mechanofluorochromism of distyrylanthracene derivatives with aggregation-induced emission. Materials Chemistry Frontiers, 2018, 2, 1595-1608.	5.9	141
49	Alkyl Chain Introduction: Inâ€Situ Solarâ€Renewable Colorful Organic Mechanoluminescence Materials. Angewandte Chemie, 2018, 130, 12909-12914.	2.0	20
50	Alkyl Chain Introduction: Inâ€Situ Solarâ€Renewable Colorful Organic Mechanoluminescence Materials. Angewandte Chemie - International Edition, 2018, 57, 12727-12732.	13.8	103
51	Organic Mechanoluminescence with Aggregationâ€Induced Emission. Chemistry - an Asian Journal, 2018, 13, 3106-3121.	3.3	49
52	Recent advances in organic thermally activated delayed fluorescence materials. Chemical Society Reviews, 2017, 46, 915-1016.	38.1	1,815
53	An AEE-active polymer containing tetraphenylethene and 9,10-distyrylanthracene moieties with remarkable mechanochromism. Chinese Journal of Polymer Science (English Edition), 2017, 35, 282-292.	3.8	32