Martin H Gerzabek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3979523/publications.pdf

Version: 2024-02-01

155 8,901 46
papers citations h-index

46 89
h-index g-index

46799

160 160 all docs citations

160 times ranked 9852 citing authors

#	Article	IF	CITATIONS
1	Soil formation, nutrient supply and ecosystem productivity on basaltic lava vs rhyolitic pumice on Alcedo Volcano, Galápagos. Soil Research, 2022, 60, 173-186.	1.1	1
2	Soil organic matter in molecular simulations. , 2022, , .		0
3	A contribution of molecular modeling to supramolecular structures in soil organic matter [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 44-59.	1.9	14
4	Soil organic carbon and fine particle stocks along a volcanic chrono- and elevation-sequence on the Galápagos archipelago/Ecuador. Geoderma Regional, 2022, 29, e00508.	2.1	2
5	On glyphosate–kaolinite surface interactions. A molecular dynamic study. European Journal of Soil Science, 2021, 72, 1231-1242.	3.9	11
6	Heavy metal contents, mobility and origin in agricultural topsoils of the Galápagos Islands. Chemosphere, 2021, 272, 129821.	8.2	22
7	Phosphate sorptionâ€desorption properties in volcanic topsoils along a chronosequence and a climatic gradient on the Galápagos Islands. Journal of Plant Nutrition and Soil Science, 2021, 184, 479-491.	1.9	3
8	Soil development and mineral transformations along a oneâ€millionâ€year chronosequence on the Galápagos Islands. Soil Science Society of America Journal, 2021, 85, 2077-2099.	2.2	13
9	Cadmium retention and microbial response in volcanic soils along gradients of soil age and climate on the $\text{Gal} \tilde{A}_i$ pagos Islands. Journal of Environmental Quality, 2021, 50, 1233-1245.	2.0	2
10	Soil organic matter stabilization at molecular scale: The role of metal cations and hydrogen bonds. Geoderma, 2021, 401, 115237.	5.1	19
11	On the Adsorption Mechanism of Humic Substances on Kaolinite and Their Microscopic Structure. Minerals (Basel, Switzerland), 2021, 11, 1138.	2.0	5
12	Soil Fertility Changes With Climate and Island Age in $Gal\tilde{A}_{i}$ pagos: New Baseline Data for Sustainable Agricultural Management. Frontiers in Environmental Science, 2021, 9, .	3.3	2
13	Adsorption process of polar and nonpolar compounds in a nanopore model of humic substances. European Journal of Soil Science, 2020, 71, 845-855.	3.9	11
14	Molecular modelling of sorption processes of a range of diverse small organic molecules in Leonardite humic acid. European Journal of Soil Science, 2020, 71, 831-844.	3.9	16
15	Changes in topsoil characteristics with climate and island age in the agricultural zones of the Galápagos. Geoderma, 2020, 376, 114534.	5.1	8
16	Impact of soil development on Cu sorption along gradients of soil age and moisture on the Galápagos Islands. Catena, 2020, 189, 104507.	5.0	9
17	Linking rock age and soil cover across four islands on the $Gal\tilde{A}_i$ pagos archipelago. Journal of South American Earth Sciences, 2020, 99, 102500.	1.4	13
18	Vertical Redistribution of Soil Organic Carbon Pools After Twenty Years of Nitrogen Addition in Two Temperate Coniferous Forests. Ecosystems, 2019, 22, 379-400.	3.4	33

#	Article	IF	Citations
19	Polarization Effects in Simulations of Kaolinite–Water Interfaces. Langmuir, 2019, 35, 15086-15099.	3.5	19
20	Agriculture changes soil properties on the Galápagos Islands – two case studies. Soil Research, 2019, 57, 201.	1.1	21
21	Weathering and soil formation in rhyolitic tephra along a moisture gradient on Alcedo Volcano, Galápagos. Geoderma, 2019, 343, 215-225.	5.1	17
22	Resistant Soil Microbial Communities Show Signs of Increasing Phosphorus Limitation in Two Temperate Forests After Long-Term Nitrogen Addition. Frontiers in Forests and Global Change, 2019, 2, .	2.3	21
23	Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 2018, 181, 104-136.	1.9	567
24	Cation–π interactions in competition with cation microhydration: a theoretical study of alkali metal cation–pyrene complexes. Journal of Molecular Modeling, 2017, 23, 131.	1.8	12
25	Molecular Dynamics Simulations of the Standard Leonardite Humic Acid: Microscopic Analysis of the Structure and Dynamics. Environmental Science & Envi	10.0	71
26	Non-destructive soil amendment application techniques on heavy metal-contaminated grassland: Success and long-term immobilising efficiency. Journal of Environmental Management, 2017, 186, 167-174.	7.8	19
27	Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biology and Fertility of Soils, 2017, 53, 9-22.	4.3	67
28	Vienna Soil-Organic-Matter Modelerâ€"Generating condensed-phase models of humic substances. Journal of Molecular Graphics and Modelling, 2015, 62, 253-261.	2.4	33
29	Determination of Soil Organic Matter Features of Extractable Fractions Using Capillary Electrophoresis: An Organic Matter Stabilization Study in a Carbon-14-Labeled Long-Term Field Experiment. SSSA Special Publication Series, 2015, , 23-40.	0.2	3
30	Wettability of organically coated tridymite surface – molecular dynamics study. Pure and Applied Chemistry, 2015, 87, 405-413.	1.9	4
31	Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an Alpine elevation gradient: Decay and nutrient release. Geoderma, 2015, 251-252, 92-104.	5.1	55
32	Radical sites in humic acids: A theoretical study on protocatechuic and gallic acids. Computational and Theoretical Chemistry, 2014, 1032, 42-49.	2.5	22
33	Proton transfer processes in polar regions of humic substances initiated by aqueous aluminum cation bridges: A computational study. Geoderma, 2014, 213, 115-123.	5.1	12
34	Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters. Global Change Biology, 2014, 20, 2272-2285.	9.5	26
35	Molecular Models of Cation and Water Molecule Bridges in Humic Substances. , 2014, , 107-115.		4
36	Soil Carbon Research Priorities. , 2014, , 483-490.		10

#	Article	IF	CITATIONS
37	Multi-class determination of anthelmintics in soil and water by LC-MS/MS. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 1128-1137.	2.3	5
38	<i>In situ</i> carbon turnover dynamics and the role of soil microorganisms therein: a climate warming study in an Alpine ecosystem. FEMS Microbiology Ecology, 2013, 83, 112-124.	2.7	48
39	The Multiradical Character of One―and Twoâ€Dimensional Graphene Nanoribbons. Angewandte Chemie - International Edition, 2013, 52, 2581-2584.	13.8	197
40	Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality, 2012, 41, 990-1000.	2.0	736
41	Differences in sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid on artificial soils as a function of soil pre-aging. Journal of Soils and Sediments, 2012, 12, 1292-1298.	3.0	10
42	The stability of the acetic acid dimer in microhydrated environments and in aqueous solution. Physical Chemistry Chemical Physics, 2012, 14, 4162.	2.8	18
43	14C-labeled organic amendments: Characterization in different particle size fractions and humic acids in a long-term field experiment. Geoderma, 2012, 177-178, 39-48.	5.1	10
44	Theoretical study of structural, mechanical and spectroscopic properties of boehmite (î³-AlOOH). Journal of Physics Condensed Matter, 2011, 23, 404201.	1.8	18
45	Molecular Dynamics Simulations of Water Molecule-Bridges in Polar Domains of Humic Acids. Environmental Science & Environmental Science & Environmenta	10.0	54
46	Capillary electrophoresis characterisation of humic acids: application to diverse forest soil samples. Environmental Chemistry, 2011, 8, 589.	1.5	9
47	Study of solvent effect on the stability of water bridge-linked carboxyl groups in humic acid models. Geoderma, 2011, 169, 20-26.	5.1	26
48	Wettability of kaolinite (001) surfaces â€" Molecular dynamic study. Geoderma, 2011, 169, 47-54.	5.1	176
49	Advances of molecular modeling of biogeochemical interfaces in soils. Geoderma, 2011, 169, 1-3.	5.1	6
50	Mid-infrared spectroscopy for topsoil layer identification according to litter type and decompositional stage demonstrated on a large sample set of Austrian forest soils. Geoderma, 2011, 166, 162-170.	5.1	11
51	Sorption of Selected Aromatic Substances—Application of Kinetic Concepts and Quantum Mechanical Modeling. Water, Air, and Soil Pollution, 2011, 215, 449-464.	2.4	4
52	The functionality of cation bridges for binding polar groups in soil aggregates. International Journal of Quantum Chemistry, 2011, 111, 1531-1542.	2.0	46
53	Impact of different plants on the gas profile of a landfill cover. Waste Management, 2011, 31, 843-853.	7.4	31
54	Recent Developments of No-Till and Organic Farming in India: Is a Combination of These Approaches Viable?. Agroecology and Sustainable Food Systems, 2011, 35, 576-612.	0.9	2

#	Article	IF	Citations
55	Soil-carbon turnover under different crop management: Evaluation of RothC-model predictions under Pannonian climate conditions. Journal of Plant Nutrition and Soil Science, 2010, 173, 662-670.	1.9	16
56	Soil organicâ€matter stocks and characteristics along an Alpine elevation gradient. Journal of Plant Nutrition and Soil Science, 2010, 173, 30-38.	1.9	133
57	Microbial community composition and activity in different Alpine vegetation zones. Soil Biology and Biochemistry, 2010, 42, 155-161.	8.8	156
58	Thermodynamic stability of hydrogenâ€bonded systems in polar and nonpolar environments. Journal of Computational Chemistry, 2010, 31, 2046-2055.	3.3	24
59	Characterisation of microbial communities in relation to physical–chemical parameters during in situ aeration of waste material. Waste Management, 2010, 30, 2177-2184.	7.4	8
60	Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science. Journal of Plant Nutrition and Soil Science, 2010, 173, 88-99.	1.9	143
61	Determination of Organic and Inorganic Carbon in Forest Soil Samples by Mid-Infrared Spectroscopy and Partial Least Squares Regression. Applied Spectroscopy, 2010, 64, 1167-1175.	2.2	48
62	Soil microbial community dynamics and phenanthrene degradation as affected by rape oil application. Applied Soil Ecology, 2010, 46, 329-334.	4.3	16
63	Decomposition of Carbonâ€14â€Labeled Organic Amendments and Humic Acids in a Longâ€Term Field Experiment. Soil Science Society of America Journal, 2009, 73, 744-750.	2.2	22
64	Effects of different chloroform stabilizers on the extraction efficiencies of phospholipid fatty acids from soils. Soil Biology and Biochemistry, 2009, 41, 428-430.	8.8	12
65	Luminescence dating of historical fluvial deposits from the Danube and Ebro. Geoarchaeology - an International Journal, 2009, 24, 224-241.	1.5	17
66	Vertical migration of radionuclides in undisturbed grassland soils. Journal of Environmental Radioactivity, 2009, 100, 716-720.	1.7	67
67	Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: a field study in Austria over 5Âyears. Environmental Geochemistry and Health, 2009, 31, 581-594.	3.4	74
68	Distribution of Road Salt Residues, Heavy Metals and Polycyclic Aromatic Hydrocarbons across a Highway-Forest Interface. Water, Air, and Soil Pollution, 2009, 198, 125-132.	2.4	85
69	Model study on sorption of polycyclic aromatic hydrocarbons to goethite. Journal of Colloid and Interface Science, 2009, 330, 244-249.	9.4	37
70	Stabilizing Capacity of Water Bridges in Nanopore Segments of Humic Substances: A Theoretical Investigation. Journal of Physical Chemistry C, 2009, 113, 16468-16475.	3.1	47
71	Phosphorus sorption–desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma, 2009, 149, 39-44.	5.1	87
72	The Effect of Traffic Density on Lead Contents in Roadside Soils: An Analysis of Published Data. Soil and Sediment Contamination, 2009, 18, 685-687.	1.9	1

#	Article	IF	Citations
73	Dating of soil layers in a young floodplain using iron oxide crystallinity. Quaternary Geochronology, 2009, 4, 260-266.	1.4	57
74	Rapid carbon accretion and organic matter pool stabilization in riverine floodplain soils. Global Biogeochemical Cycles, 2009, 23, .	4.9	80
75	Spectroscopic behaviour of 14C-labeled humic acids in a long-term field experiment with three cropping systems. Soil Research, 2009, 47, 459.	1.1	22
76	Fundamentals of Organic Agriculture – Past and Present. , 2009, , 13-37.		11
77	From sediment to soil: floodplain phosphorus transformations at the Danube River. Biogeochemistry, 2008, 88, 117-126.	3.5	31
78	The thermodynamic stability of hydrogen bonded and cation bridged complexes of humic acid models—A theoretical study. Chemical Physics, 2008, 349, 69-76.	1.9	37
79	Impact of different tillage practices on molecular characteristics of humic acids in a long-term field experiment — An application of three different spectroscopic methods. Science of the Total Environment, 2008, 406, 256-268.	8.0	46
80	Acid–base properties of a goethite surface model: A theoretical view. Geochimica Et Cosmochimica Acta, 2008, 72, 3587-3602.	3.9	50
81	Hydrogen Bonds And Solvent Effects In Soil Processes: A Theoretical View. Challenges and Advances in Computational Chemistry and Physics, 2008, , 321-347.	0.6	1
82	Behaviour of radionuclides in soil/crop systems following contamination. Radioactivity in the Environment, 2007, 10, 19-42.	0.2	10
83	Ab initio calculations of relative stabilities of different structural arrangements in dioctahedral phyllosilicates. Clays and Clay Minerals, 2007, 55, 220-232.	1.3	24
84	Quantum Chemical Adsorption Studies on the (110) Surface of the Mineral Goethite. Journal of Physical Chemistry C, 2007, 111, 877-885.	3.1	39
85	FTIRâ€spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na ₄ P ₂ O ₇ , and Na ₂ CO ₃ extraction procedures. Journal of Plant Nutrition and Soil Science, 2007, 170, 522-529.	1.9	232
86	Formation of 2,4?D complexes on montmorillonites? an ab initio molecular dynamics study. European Journal of Soil Science, 2007, 58, 680-691.	3.9	29
87	Retention of copper, cadmium and zinc in soil and its textural fractions influenced by long-term field management. European Journal of Soil Science, 2007, 58, 1145-1154.	3.9	39
88	Editorial: Molecular modelling in soil research. European Journal of Soil Science, 2007, 58, 867-869.	3.9	1
89	Interaction of the 2,4-dichlorophenoxyacetic acid herbicide with soil organic matter moieties: a theoretical study. European Journal of Soil Science, 2007, 58, 889-899.	3.9	40
90	Interaction of naphthalene derivatives with soil: an experimental and theoretical case study. European Journal of Soil Science, 2007, 58, 967-977.	3.9	4

#	Article	IF	Citations
91	Linking dynamics of soil microbial phospholipid fatty acids to carbon mineralization in a 13C natural abundance experiment: Impact of heavy metals and acid rain. Soil Biology and Biochemistry, 2007, 39, 3177-3186.	8.8	52
92	Sorption of heavy metals on organic and inorganic soil constituents. Environmental Chemistry Letters, 2007, 5, 23-27.	16.2	92
93	An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environmental Chemistry Letters, 2007, 5, 9-12.	16.2	161
94	Treatment of Landfill Leachate by Irrigation and Interaction with Landfill Gas. Environmental Technology (United Kingdom), 2006, 27, 447-457.	2.2	9
95	Response of the sorption behavior of Cu, Cd, and Zn to different soil management. Journal of Plant Nutrition and Soil Science, 2006, 169, 60-68.	1.9	58
96	Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure. FEMS Microbiology Ecology, 2006, 56, 219-235.	2.7	143
97	How are soil use and management reflected by soil organic matter characteristics: a spectroscopic approach. European Journal of Soil Science, 2006, 57, 485-494.	3.9	108
98	Mechanisms of solute transport affect small-scale abundance and function of soil microorganisms in the detritusphere. European Journal of Soil Science, 2006, 57, 583-595.	3.9	112
99	Long-term effects of croppedvs. fallow and fertilizer amendments on soil organic matter II. Nitrogen. Journal of Plant Nutrition and Soil Science, 2005, 168, 212-218.	1.9	17
100	Long-term effects of croppedvs. fallow and fertilizer amendments on soil organic matter I. Organic carbon. Journal of Plant Nutrition and Soil Science, 2005, 168, 108-116.	1.9	39
101	Vertical migration of 60Co, 137Cs and 226Ra in agricultural soils as observed in lysimeters under crop rotation. Journal of Environmental Radioactivity, 2005, 79, 93-106.	1.7	24
102	The Effect of Landfill Leachate Irrigation on Soil Gas Composition: Methane Oxidation and Nitrous Oxide Formation. Water, Air, and Soil Pollution, 2005, 164, 295-313.	2.4	28
103	Activity of microorganisms in the rhizosphere of herbicide treated and untreated transgenic glufosinate-tolerant and wildtype oilseed rape grown in containment. Plant and Soil, 2005, 266, 105-116.	3.7	46
104	Soil Redistribution Model for Undisturbed and Cultivated Sites Based on Chernobyl-Derived Cesium-137 Fallout. Journal of Environmental Quality, 2005, 34, 1302-1310.	2.0	7
105	Influence of Cereal Varieties and Site Conditions on Heavy Metal Accumulations in Cereal Crops on Polluted Soils of Bangladesh. Communications in Soil Science and Plant Analysis, 2005, 36, 889-906.	1.4	11
106	Influence of Soil Amendments on Heavy Metal Accumulation in Crops on Polluted Soils of Bangladesh. Communications in Soil Science and Plant Analysis, 2005, 36, 907-924.	1.4	21
107	Sorption of naphthalene derivatives to soils from a long-term field experiment. Chemosphere, 2005, 59, 639-647.	8.2	23
108	Role of Microorganisms in Carbon Cycling in Soils., 2005, , 139-157.		15

#	Article	IF	Citations
109	Long-term behaviour of 15N in an alpine grassland ecosystem. Biogeochemistry, 2004, 70, 59-69.	3.5	23
110	Metabolised Tritium and Radiocarbon in Lichens and Their Use as Biomonitors. Journal of Atmospheric Chemistry, 2004, 49, 329-341.	3.2	7
111	Modeling Catalytic Effects of Clay Mineral Surfaces on Peptide Bond Formation. Journal of Physical Chemistry B, 2004, 108, 10120-10130.	2.6	36
112	Effects of level and quality of organic matter input on carbon storage and biological activity in soil: Synthesis of a long-term experiment. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	61
113	An Andosol–Cambisol toposequence on granite in the Austrian Bohemian Massif. Catena, 2004, 56, 31-43.	5.0	34
114	Ab Initio Molecular Dynamics Study of a Monomolecular Water Layer on Octahedral and Tetrahedral Kaolinite Surfaces. Journal of Physical Chemistry B, 2004, 108, 5930-5936.	2.6	146
115	SORPTION OF PHENOXYACETIC ACID HERBICIDES ON THE KAOLINITE MINERAL SURFACE – AN AB INITIO MOLECULAR DYNAMICS SIMULATION. Soil Science, 2004, 169, 44-54.	0.9	26
116	Adsorption of organic substances on broken clay surfaces: A quantum chemical study. Journal of Computational Chemistry, 2003, 24, 1853-1863.	3.3	39
117	Ventomod: a dynamic model for leaf to fruit transfer of radionuclides in processing tomato plants (Lycopersicon esculentum Mill.) following a direct contamination event. Journal of Environmental Radioactivity, 2003, 65, 309-328.	1.7	5
118	Accumulation of radionuclides from radioactive substrata by some micromycetes. Journal of Environmental Radioactivity, 2003, 67, 119-130.	1.7	17
119	Solvent Effects on Hydrogen BondsA Theoretical Study. Journal of Physical Chemistry A, 2002, 106, 1862-1871.	2.5	167
120	Characterization of Waste Organic Matter by FT-IR Spectroscopy: Application in Waste Science. Applied Spectroscopy, 2002, 56, 1170-1175.	2.2	118
121	Theoretical Study of Adsorption Sites on the (001) Surfaces of 1:1 Clay Minerals. Langmuir, 2002, 18, 139-147.	3.5	106
122	Ab Initio Molecular Dynamics Study of Adsorption Sites on the (001) Surfaces of 1:1 Dioctahedral Clay Minerals. Journal of Physical Chemistry B, 2002, 106, 11515-11525.	2.6	105
123	Influence of dissolved humic substances on the leaching of MCPA in a soil column experiment. Chemosphere, 2002, 46, 495-499.	8.2	36
124	Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biology and Biochemistry, 2002, 34, 1839-1851.	8.8	231
125	Radiocaesium contamination of meadow vegetationâ€"time-dependent variability and influence of soil characteristics at grassland sites in Austria. Journal of Environmental Radioactivity, 2002, 58, 143-161.	1.7	27
126	Decomposition of maize straw in three European soils as revealed by DRIFT spectra of soil particle fractions. Geoderma, 2001, 99, 245-260.	5.1	38

#	Article	IF	CITATIONS
127	Transfer of iodine from soil to cereal grains in agricultural areas of Austria. Science of the Total Environment, 2001, 267, 33-40.	8.0	36
128	A density-functional investigation of aluminium(III)–citrate complexes. Physical Chemistry Chemical Physics, 2001, 3, 1979-1985.	2.8	41
129	Soil Organic Matter Pools and Carbonâ€13 Natural Abundances in Particleâ€Size Fractions of a Longâ€Term Agricultural Field Experiment Receiving Organic Amendments. Soil Science Society of America Journal, 2001, 65, 352-358.	2.2	121
130	Nitrogen distribution and 15N natural abundances in particle size fractions of a long-term agricultural field experiment. Journal of Plant Nutrition and Soil Science, 2001, 164, 475.	1.9	21
131	Fallout strontium and caesium transfer from vegetation to cow milk at two lowland and two Alpine pastures. Journal of Environmental Radioactivity, 2001, 54, 267-273.	1.7	23
132	Response of sorption processes of MCPA to the amount and origin of organic matter in a long-term field experiment. European Journal of Soil Science, 2001, 52, 279-286.	3.9	45
133	Microbial Population Structures in Soil Particle Size Fractions of a Long-Term Fertilizer Field Experiment. Applied and Environmental Microbiology, 2001, 67, 4215-4224.	3.1	623
134	90Sr AND 137Cs IN ENVIRONMENTAL SAMPLES FROM DOLON NEAR THE SEMIPALATINSK NUCLEAR TEST SITE. Health Physics, 2000, 79, 257-265.	0.5	23
135	Soil-to-plant transfer of fallout caesium and strontium in Austrian lowland and Alpine pastures. Journal of Environmental Radioactivity, 2000, 49, 217-233.	1.7	43
136	Interaction of Acetate Anion with Hydrated Al3+Cation:Â A Theoretical Study. Journal of Physical Chemistry A, 2000, 104, 6824-6833.	2.5	44
137	A density functional theoretical study on solvated Al3+–oxalate complexes: structures and thermodynamic properties. Physical Chemistry Chemical Physics, 2000, 2, 2845-2850.	2.8	30
138	Influence of Molecular Structure on Sorption of Phenoxyalkanoic Herbicides on Soil and Its Particle Size Fractions. Journal of Agricultural and Food Chemistry, 2000, 48, 3722-3727.	5.2	55
139	Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by 13C distribution and CPMAS-NMR spectra. European Journal of Soil Science, 2000, 51, 583-594.	3.9	39
140	The effect of maize straw placement on mineralization of C and N in soil particle size fractions. European Journal of Soil Science, 1999, 50, 73-85.	3.9	109
141	Increased Sequestration of Organic Carbon in Soil by Hydrophobic Protection. Die Naturwissenschaften, 1999, 86, 496-499.	1.6	69
142	Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem. Journal of Microbiological Methods, 1999, 36, 45-54.	1.6	43
143	Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biology and Biochemistry, 1999, 31, 1253-1264.	8.8	151
144	Soil management system effects on size fractionated humic substances. Geoderma, 1999, 92, 87-109.	5.1	29

#	Article	IF	CITATIONS
145	Distribution of radiocaesium in an Austrian forest stand. Science of the Total Environment, 1999, 226, 75-83.	8.0	64
146	lodine and bromine contents of some Austrian soils and relations to soil characteristics. Journal of Plant Nutrition and Soil Science, 1999, 162, 415-419.	1.9	34
147	Relationship between soil organic matter and micropores in a long-term experiment at Ultuna, Sweden. Journal of Plant Nutrition and Soil Science, 1999, 162, 493-498.	1.9	52
148	Xylanase, Invertase and Urease Activity in Particle - Size Fractions of Soils., 1999,, 275-286.		8
149	The response of soil nitrogen and 15N natural abundance to different amendments in a long-term experiment at Ultuna, Sweden. Agronomy for Sustainable Development, 1999, 19, 457-466.	0.8	16
150	Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biology and Biochemistry, 1998, 30, 9-17.	8.8	287
151	Invertase and xylanase activity of bulk soil and particle-size fractions during maize straw decomposition. Soil Biology and Biochemistry, 1998, 31, 9-18.	8.8	101
152	Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy. Geoderma, 1998, 83, 331-342.	5.1	192
153	137Cs-migration in soils and its transfer to roe deer in an Austrian forest stand. Science of the Total Environment, 1996, 181, 237-247.	8.0	37
154	Response of Soil Aggregate Stability to Manure Amendments in the Ultuna Long-Term Soil Organic Matter Experiment. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1995, 158, 257-260.	0.4	41
155	Influence of plowing on the depth distribution of various radionuclides in the soil. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1991, 154, 211-215.	0.4	11