Richard Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3979299/publications.pdf

Version: 2024-02-01

44 papers 1,673 citations

279798 23 h-index 315739 38 g-index

61 all docs

61 docs citations

61 times ranked

2189 citing authors

#	Article	IF	CITATIONS
1	Plasticity of genetic interactions in metabolic networks of yeast. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2307-2312.	7.1	185
2	Contributions of roots and rootstocks to sustainable, intensified crop production. Journal of Experimental Botany, 2013, 64, 1209-1222.	4.8	139
3	Identification of pathogenicityâ€related genes in <i>Fusarium oxysporum</i> f. sp. <i>cepae</i> . Molecular Plant Pathology, 2016, 17, 1032-1047.	4.2	123
4	A General Method for Calculating Likelihoods Under the Coalescent Process. Genetics, 2011, 189, 977-987.	2.9	108
5	A microsatellite linkage map for the cultivated strawberry (FragariaÂ×Âananassa) suggests extensive regions of homozygosity in the genome that may have resulted from breeding and selection. Theoretical and Applied Genetics, 2012, 124, 1229-1240.	3.6	80
6	Characterisation of pathogen-specific regions and novel effector candidates in Fusarium oxysporum f. sp. cepae. Scientific Reports, 2018, 8, 13530.	3.3	77
7	Discrete lineages within Alternaria alternata species group: Identification using new highly variable loci and support from morphological characters. Fungal Biology, 2015, 119, 994-1006.	2.5	70
8	A novel 3D imaging system for strawberry phenotyping. Plant Methods, 2017, 13, 93.	4.3	57
9	Comparative genomics of <i>Pseudomonas syringae</i> reveals convergent gene gain and loss associated with specialization onto cherry (<i>Prunus avium</i>). New Phytologist, 2018, 219, 672-696.	7.3	52
10	Biased Gene Conversion Affects Patterns of Codon Usage and Amino Acid Usage in the Saccharomyces sensu stricto Group of Yeasts. Molecular Biology and Evolution, 2011, 28, 117-129.	8.9	51
11	Identification of powdery mildew resistance QTL in strawberry (Fragaria × ananassa). Theoretical and Applied Genetics, 2018, 131, 1995-2007.	3 . 6	51
12	Fusel Alcohols Regulate Translation Initiation by Inhibiting eIF2B to Reduce Ternary Complex in a Mechanism That May Involve Altering the Integrity and Dynamics of the eIF2B Body. Molecular Biology of the Cell, 2010, 21, 2202-2216.	2.1	42
13	Mapping QTL associated with Verticillium dahliae resistance in the cultivated strawberry (Fragaria $ ilde{A}$ —) Tj ETQq $1\ 1$	0,784314 6.3	l rgBT /Overl
14	A new three-locus model for rootstock-induced dwarfing in apple revealed by genetic mapping of root bark percentage. Journal of Experimental Botany, 2016, 67, 1871-1881.	4.8	41
15	Genomics Evolutionary History and Diagnostics of the Alternaria alternata Species Group Including Apple and Asian Pear Pathotypes. Frontiers in Microbiology, 2019, 10, 3124.	3.5	41
16	Characterization of the pathogenicity of strains of <i>Pseudomonas syringae</i> towards cherry and plum. Plant Pathology, 2018, 67, 1177-1193.	2.4	40
17	Bioinformatic characterisation of the effector repertoire of the strawberry pathogen Phytophthora cactorum. PLoS ONE, 2018, 13, e0202305.	2.5	40
18	Variation in Host and Pathogen in the Neonectria/Malus Interaction; toward an Understanding of the Genetic Basis of Resistance to European Canker. Frontiers in Plant Science, 2016, 7, 1365.	3.6	38

#	Article	IF	Citations
19	Amplicon-based metagenomics identified candidate organisms in soils that caused yield decline in strawberry. Horticulture Research, 2015, 2, 15022.	6.3	37
20	The Use of Arbuscular Mycorrhizal Fungi to Improve Strawberry Production in Coir Substrate. Frontiers in Plant Science, 2016, 7, 1237.	3.6	35
21	Quantitative trait loci controlling Phytophthora cactorum resistance in the cultivated octoploid strawberry (Fragaria × ananassa). Horticulture Research, 2019, 6, 60.	6.3	27
22	Vegetative compatibility groups partition variation in the virulence of Verticillium dahliae on strawberry. PLoS ONE, 2018, 13, e0191824.	2.5	27
23	Identification of secondary targets of N-containing bisphosphonates in mammalian cells via parallel competition analysis of the barcoded yeast deletion collection. Genome Biology, 2009, 10, R93.	9.6	24
24	On the evolutionary history of the domesticated apple. Nature Genetics, 2011, 43, 1043-1044.	21.4	24
25	Draft Genome Sequence of a European Isolate of the Apple Canker Pathogen <i>Neonectria ditissima</i> . Genome Announcements, 2015, 3, .	0.8	22
26	Rapid, automated detection of stem canker symptoms in woody perennials using artificial neural network analysis. Plant Methods, 2015, 11, 57.	4.3	21
27	Defining strawberry shape uniformity using 3D imaging and genetic mapping. Horticulture Research, 2020, 7, 115.	6.3	19
28	Understanding genetic variation and function- the applications of next generation sequencing. Seminars in Cell and Developmental Biology, 2012, 23, 230-236.	5.0	17
29	Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits. Plant Pathology, 2020, 69, 962-978.	2.4	16
30	Genomic Investigation of the Strawberry Pathogen Phytophthora fragariae Indicates Pathogenicity Is Associated With Transcriptional Variation in Three Key Races. Frontiers in Microbiology, 2020, 11, 490.	3.5	14
31	Genomic Informed Breeding Strategies for Strawberry Yield and Fruit Quality Traits. Frontiers in Plant Science, 2021, 12, 724847.	3.6	14
32	Draft Genome Sequence of an Onion Basal Rot Isolate of Fusarium proliferatum. Microbiology Resource Announcements, 2019, 8, .	0.6	10
33	Genetic and phenotypic associations between root architecture, arbuscular mycorrhizal fungi colonisation and low phosphate tolerance in strawberry (Fragaria × ananassa). BMC Plant Biology, 2020, 20, 154.	3.6	10
34	Comparative Analysis of Host-Associated Variation in Phytophthora cactorum. Frontiers in Microbiology, 2021, 12, 679936.	3.5	10
35	Identification and Expression of Secreted In Xylem Pathogenicity Genes in Fusarium oxysporum f. sp. pisi. Frontiers in Microbiology, 2021, 12, 593140.	3.5	9
36	Basal Rot of Narcissus: Understanding Pathogenicity in Fusarium oxysporum f. sp. narcissi. Frontiers in Microbiology, 2019, 10, 2905.	3.5	8

#	Article	IF	CITATIONS
37	One hundred years of research at East Malling: science into practice for perennial fruit crops. Annals of Applied Biology, 2013, 163, 1-11.	2.5	6
38	Mapping QTL underlying fruit quality traits in an F $<$ sub $>$ 1 $<$ /sub $>$ strawberry population. Journal of Horticultural Science and Biotechnology, 2021, 96, 634-645.	1.9	6
39	Identifying resistance in wild and ornamental cherry towards bacterial canker caused by <i>Pseudomonas syringae</i> . Plant Pathology, 2022, 71, 949-965.	2.4	6
40	An inexpensive and rapid genomic DNA extraction protocol for rosaceous species. Journal of Horticultural Science and Biotechnology, 2015, 90, 427-432.	1.9	5
41	Draft Genome Sequence of the Strawberry Anthracnose Pathogen <i>Colletotrichum fructicola</i> Microbiology Resource Announcements, 2020, 9, .	0.6	4
42	Transposon Mutagenesis of Pseudomonas syringae Pathovars syringae and morsprunorum to Identify Genes Involved in Bacterial Canker Disease of Cherry. Microorganisms, 2021, 9, 1328.	3.6	3
43	Advances and challenges in apple breeding. Burleigh Dodds Series in Agricultural Science, 2019, , 217-260.	0.2	2
44	An improved conjugation method for Pseudomonas syringae. Journal of Microbiological Methods, 2020, 177, 106025.	1.6	1