Dario Narducci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3979167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermoelectrics: From history, a window to the future. Materials Science and Engineering Reports, 2019, 138, 100501.	14.8	341
2	Thick Film ZnO Resistive Gas Sensors: Analysis of Their Kinetic Behavior. Journal of the Electrochemical Society, 1989, 136, 1945-1948.	1.3	160
3	Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors. Journal of Solid State Chemistry, 2012, 193, 19-25.	1.4	156
4	Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si. Nanotechnology, 2013, 24, 205402.	1.3	129
5	Do we really need high thermoelectric figures of merit? A critical appraisal to the power conversion efficiency of thermoelectric materials. Applied Physics Letters, 2011, 99, 102104.	1.5	113
6	Influence of Extended Defects and Native Impurities on the Electrical Properties of Directionally Solidified Polycrystalline Silicon. Journal of the Electrochemical Society, 1988, 135, 155-165.	1.3	77
7	Encapsulating Eu ³⁺ complex doped layers to improve Siâ€based solar cell efficiency. Progress in Photovoltaics: Research and Applications, 2009, 17, 519-525.	4.4	75
8	High Power Thermoelectric Generator Based on Vertical Silicon Nanowires. Nano Letters, 2020, 20, 4748-4753.	4.5	66
9	Formation of stable Si–O–C submonolayers on hydrogen-terminated silicon(111) under low-temperature conditions. Beilstein Journal of Nanotechnology, 2015, 6, 19-26.	1.5	57
10	Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting. Advances in Colloid and Interface Science, 2015, 226, 166-186.	7.0	54
11	Silicon de novo: energy filtering and enhanced thermoelectric performances of nanocrystalline silicon and silicon alloys. Journal of Materials Chemistry C, 2015, 3, 12176-12185.	2.7	42
12	Preferential Formation of SiOC over SiC Linkage upon Thermal Grafting on Hydrogenâ€Terminated Silicon (111). Chemistry - A European Journal, 2014, 20, 15151-15158.	1.7	40
13	Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies. Energy, 2017, 131, 230-238.	4.5	37
14	Practical development of efficient thermoelectric – Photovoltaic hybrid systems based on wide-gap solar cells. Applied Energy, 2021, 300, 117343.	5.1	37
15	Smart integration of silicon nanowire arrays in all-silicon thermoelectric micro-nanogenerators. Semiconductor Science and Technology, 2016, 31, 084001.	1.0	35
16	Thermoelectric harvesters and the internet of things: technological and economic drivers. JPhys Energy, 2019, 1, 024001.	2.3	35
17	Electron paramagnetic resonance study of the interaction of the ZnO surface with air and air–reducing gas mixtures. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1691-1694.	1.7	34
18	An Introduction to Nanotechnologies: What's in it for Us?. Veterinary Research Communications, 2007, 31, 131-137.	0.6	32

#	Article	IF	CITATIONS
19	Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors. Biosensors and Bioelectronics, 2013, 50, 278-293.	5.3	31
20	Challenges and Perspectives in Tandem Thermoelectric–Photovoltaic Solar Energy Conversion. IEEE Nanotechnology Magazine, 2016, 15, 348-355.	1.1	31
21	Enhancement of the power factor in twoâ€phase silicon–boron nanocrystalline alloys. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1255-1258.	0.8	27
22	Parametric modeling of energy filtering by energy barriers in thermoelectric nanocomposites. Journal of Applied Physics, 2015, 117, .	1.1	27
23	Short-range order of Zn and Cu in metaphosphate glasses by X-ray diffraction. Journal of Non-Crystalline Solids, 1989, 111, 221-227.	1.5	26
24	Fractal Nanotechnology. Nanoscale Research Letters, 2008, 3, .	3.1	26
25	Paradoxical Enhancement of the Power Factor of Polycrystalline Silicon as a Result of the Formation of Nanovoids. Journal of Electronic Materials, 2014, 43, 3812-3816.	1.0	26
26	Coordination of zinc and copper in phosphate glasses by EXAFS. Journal of Non-Crystalline Solids, 1991, 136, 198-204.	1.5	25
27	Transmission electron microscopy investigation of tin subâ€oxide nucleation upon SnO2 deposition on silicon. Applied Physics Letters, 1996, 68, 1207-1208.	1.5	24
28	Thermal and UV Hydrosilylation of Alcohol-Based Bifunctional Alkynes on Si (111) surfaces: How surface radicals influence surface bond formation. Scientific Reports, 2015, 5, 11299.	1.6	24
29	Paramagnetic point defects in SnO2and their reactivity with the surrounding gases. Part 1.—Interaction of oxygen lattice centres with vapour-phase H2O, air, inert and combustible gases, as revealed by electron paramagnetic resonance spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3711-3713.	1.7	20
30	Power Factor Enhancement by Inhomogeneous Distribution of Dopants in Two-Phase Nanocrystalline Systems. Journal of Electronic Materials, 2014, 43, 1896-1904.	1.0	20
31	Conditions for beneficial coupling of thermoelectric and photovoltaic devices. Journal of Materials Research, 2015, 30, 2663-2669.	1.2	20
32	Enhanced phonon scattering by nanovoids in high thermoelectric power factor polysilicon thin films. Applied Physics Letters, 2016, 109, .	1.5	20
33	Biosensing at the Nanoscale: There's Plenty of Room Inside. Science of Advanced Materials, 2011, 3, 426-435.	0.1	19
34	Infrared specular reflection spectra of copper-zinc phosphate glasses. Vibrational Spectroscopy, 1994, 7, 169-173.	1.2	18
35	Synergy between defects, charge neutrality and energy filtering in hyper-doped nanocrystalline materials for high thermoelectric efficiency. Nanoscale, 2019, 11, 7667-7673.	2.8	18
36	Nanostructured potential well/barrier engineering for realizing unprecedentedly large thermoelectric power factors. Materials Today Physics, 2019, 11, 100159.	2.9	18

#	Article	IF	CITATIONS
37	Defect Clustering and Boron Electrical Deactivation in pâ€Doped Polycrystalline Diamond Films. Journal of the Electrochemical Society, 1991, 138, 2446-2451.	1.3	17
38	Ultradense silicon nanowire arrays produced via top-down planar technology. Microelectronic Engineering, 2011, 88, 877-881.	1.1	17
39	Geometrical reconstructions and electronic relaxations of silicon surfaces. I. An electron density topological study of H-covered and clean Si(111)(1×1) surfaces. Journal of Chemical Physics, 2000, 112, 887-899.	1.2	16
40	Chemical, energetic, and geometric heterogeneity of device-quality (100) surfaces of single crystalline silicon after HFaq etching. Applied Surface Science, 2008, 254, 5781-5790.	3.1	16
41	Enhanced Thermoelectric Properties of Strongly Degenerate Polycrystalline Silicon upon Second Phase Segregation. Materials Research Society Symposia Proceedings, 2011, 1314, 1.	0.1	15
42	Analysis of Thermal Losses for a Variety of Single-Junction Photovoltaic Cells: An Interesting Means of Thermoelectric Heat Recovery. Journal of Electronic Materials, 2015, 44, 1809-1813.	1.0	15
43	Energy Filtering and Thermoelectrics: Artifact or Artifice?. Journal of Nanoscience and Nanotechnology, 2017, 17, 1663-1667.	0.9	15
44	Experimental evidence and computational analysis of the electronic density modulation induced by gaseous molecules at Si(001) surfaces upon self-assembling organic monolayer. Applied Surface Science, 2001, 175-176, 379-385.	3.1	14
45	Recent Advances on Thermoelectric Silicon for Low-Temperature Applications. Materials, 2022, 15, 1214.	1.3	14
46	Terascale integration via a redesign of the crossbar based on a vertical arrangement of poly-Si nanowires. Semiconductor Science and Technology, 2010, 25, 095011.	1.0	13
47	Impact of synthetic conditions on the anisotropic thermal conductivity of poly(3,4-ethylenedioxythiophene) (PEDOT): A molecular dynamics investigation. Physical Review Materials, 2020, 4, .	0.9	13
48	Investigation of gas–surface interactions at self-assembled silicon surfaces acting as gas sensors. Applied Surface Science, 2003, 212-213, 491-496.	3.1	12
49	Combined IR and XPS analysis of the native (1 0 0) surface of singleâ€crystalline silicon after HF _{aq} etching. Surface and Interface Analysis, 2007, 39, 836-844.	0.8	12
50	Fabrication of Silicon Nanowire Forests for Thermoelectric Applications by Metal-Assisted Chemical Etching. Journal of Materials Engineering and Performance, 2018, 27, 6279-6285.	1.2	12
51	Hierarchically nanostructured thermoelectric materials: challenges and opportunities for improved power factors. European Physical Journal B, 2020, 93, 1.	0.6	12
52	Economic Convenience of Hybrid Thermoelectric-Photovoltaic Solar Harvesters. ACS Applied Energy Materials, 2021, 4, 4029-4037.	2.5	12
53	Boron diffusivity in nonimplanted diamond single crystals measured by impedance spectroscopy. Journal of Applied Physics, 1990, 68, 1184-1186.	1.1	11
54	Exceptional thermoelectric power factors in hyperdoped, fully dehydrogenated nanocrystalline silicon thin films. Applied Physics Letters, 2021, 119, .	1.5	11

#	Article	IF	CITATIONS
55	High temperature standard gibbs free energy determinations for Co-o systems by e.m.f. measurements. A statistical approach to evaluate the reliability of the current methods. Materials Chemistry and Physics, 1985, 12, 377-388.	2.0	10
56	Influence of Grain Size on the Thermoelectric Properties of Polycrystalline Silicon Nanowires. Journal of Electronic Materials, 2015, 44, 371-376.	1.0	10
57	Interplay between synthetic conditions and micromorphology in poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:Tos): an atomistic investigation. Physical Chemistry Chemical Physics, 2019, 21, 8580-8586.	1.3	10
58	Electrical Characterization of Metal Contacts on Diamond Thin Films. Materials Research Society Symposia Proceedings, 1989, 162, 333.	0.1	9
59	Phonon scattering enhancement in silicon nanolayers. Journal of Materials Science, 2013, 48, 2779-2784.	1.7	9
60	Phonon Scattering in Silicon by Multiple Morphological Defects: A Multiscale Analysis. Journal of Electronic Materials, 2018, 47, 5148-5157.	1.0	9
61	Experimental Determination of Power Losses and Heat Generation in Solar Cells for Photovoltaic-Thermal Applications. Journal of Materials Engineering and Performance, 2018, 27, 6291-6298.	1.2	9
62	Recombination effects and impurity segregation at grain boundaries in polycrystalline silicon. Revue De Physique Appliquée, 1987, 22, 631-636.	0.4	9
63	Spectromagnetic evidence for spatial correlation of copper centres in phosphate glasses and its effect on the charge-transport processes. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 3587.	1.0	8
64	Infrared microcharacterization of grain boundaries in polycrystalline silicon. Solid State Communications, 1989, 69, 457-460.	0.9	8
65	Evidence for H2 at high pressure in the silicon nanocavities after dipping in HF solution. Surface Science, 2009, 603, 2188-2192.	0.8	8
66	Crossbar architecture for tera-scale integration. Semiconductor Science and Technology, 2011, 26, 045005.	1.0	8
67	High figures of merit in degenerate semiconductors. Energy filtering by grain boundaries in heavily doped polycrystalline silicon. AIP Conference Proceedings, 2012, , .	0.3	8
68	Strain-induced generation of silicon nanopillars. Nanotechnology, 2013, 24, 335302.	1.3	8
69	Simultaneous materials and layout optimization of non-imaging optically concentrated solar thermoelectric generators. Energy, 2020, 194, 116867.	4.5	8
70	CO determination in air by YSZ-based sensors. Sensors and Actuators B: Chemical, 1994, 19, 566-568.	4.0	7
71	Vibrational study on styrene functionalized porous silicon: A method for determining the relative yield of different grafting routes. Surface Science, 2007, 601, 2836-2839.	0.8	7
72	Nanocavities in silicon: An infrared investigation of internal surface reconstruction after hydrogen implantation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 173-176.	1.7	7

#	Article	IF	CITATIONS
73	Theoretical Analysis of Two Novel Hybrid Thermoelectric-Photovoltaic Systems Based on Cu ₂ ZnSnS ₄ Solar Cells. Journal of Nanoscience and Nanotechnology, 2017, 17, 1608-1615.	0.9	7
74	Suitability of Electrical Coupling in Solar Cell Thermoelectric Hybridization. Designs, 2018, 2, 32.	1.3	7
75	Efficiency at Maximum Power of Dissipative Thermoelectric Generators: A Finite-time Thermodynamic Analysis. Journal of Materials Engineering and Performance, 2018, 27, 6274-6278.	1.2	7
76	Optical and spectromagnetical properties of phosphate glasses containing ruthenium and titanium ions. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 705.	1.0	6
77	Recent achievements in semiconductor defect passivation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 45, 126-133.	1.7	6
78	Hydrogen injection and retention in nanocavities of single-crystalline silicon. Journal Physics D: Applied Physics, 2009, 42, 062001.	1.3	6
79	Nanovoid Formation and Dynamics in He+-Implanted Nanocrystalline Silicon. Journal of Electronic Materials, 2014, 43, 3852-3856.	1.0	6
80	On the mechanism ruling the morphology of silicon nanowires obtained by one-pot metal-assisted chemical etching. Nanotechnology, 2020, 31, 404002.	1.3	6
81	Chemically induced disordering of Si (100) surfaces upon SC1/SC2 etching analysed by high-resolution transmission electron microscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 73, 154-157.	1.7	5
82	Modulation of Si(100) electronic surface density due to supramolecular interactions of gaseous molecules with self-assembled organic monolayers. Materials Science and Engineering C, 2001, 15, 253-255.	3.8	5
83	Assigning chemical configurations to the XPS features observed at pristine (100) Si surface resulting after etching in HF aqueous solution. Applied Surface Science, 2010, 256, 6330-6339.	3.1	5
84	Nanograin Effects on the Thermoelectric Properties of Poly-Si Nanowires. Journal of Electronic Materials, 2013, 42, 2393-2401.	1.0	5
85	Effect of Impurity Segregation on the Electrical Properties of Grain Boundaries in Polycrystalline Silicon. NATO ASI Series Series B: Physics, 1989, , 105-121.	0.2	5
86	CO2 monitoring by solid-state limiting-current sensors. Sensors and Actuators B: Chemical, 1995, 25, 636-638.	4.0	4
87	Solution based, RuHCl(CO)(PPh3)3 catalyzed hydrosilylation of alkynes onto Si(100) surfaces. Surface Science, 2007, 601, 2840-2844.	0.8	4
88	Explicitly Accounting for the Heat Sink Strengths in the Thermal Matching of Thermoelectric Devices. A Unified Practical Approach. Materials Today: Proceedings, 2015, 2, 474-482.	0.9	4
89	Compact Model for Thermoelectric Power Factor Enhancement by Energy Barriers in a Two-phase Composite Semiconductor. Materials Today: Proceedings, 2015, 2, 497-503.	0.9	4
90	Annealing of Heavily Boron-Doped Silicon: Effect on Electrical and Thermoelectric Properties. Journal of Nanoscience and Nanotechnology, 2017, 17, 1657-1662.	0.9	4

#	Article	IF	CITATIONS
91	Electrical activity of extended defects in polycrystalline silicon. Revue De Physique Appliquée, 1988, 23, 101-104.	0.4	4
92	Electron spin resonance investigation of the electronic structure of hopping centres and the polaronic conduction in iron-containing phosphate glasses. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 4099.	1.0	3
93	Contribution to the interpretation of the thermodynamic and kinetic behaviour of chlorine gas solid-state potentiometric sensors. Sensors and Actuators B: Chemical, 1992, 7, 637-641.	4.0	3
94	Surface microcharacterization of silicon wafers by the light-beam-induced current technique in the planar configuration and by attenuated total reflection spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 579-585.	0.6	3
95	Morphology changes of Si(0 0 1) surfaces during wet chemical halogenation. Applied Surface Science, 2003, 212-213, 595-600.	3.1	3
96	On the re-oxidation of silicon(0 0 1) surfaces modified by self-assembled monolayers. Applied Surface Science, 2003, 212-213, 649-653.	3.1	3
97	Metallization of grafted silicon surfaces: Sputtering-related damage effects. Surface Science, 2007, 601, 2855-2858.	0.8	3
98	Comparing the IR spectra of Hâ€ŧerminated inner and outer silicon surfaces. Surface and Interface Analysis, 2010, 42, 1321-1325.	0.8	3
99	PdGe contact fabrication on Se-doped Ge. Scripta Materialia, 2017, 139, 104-107.	2.6	3
100	Tuning PEDOT:Tos Thermoelectric Properties Through Nanoparticle Inclusion. Journal of Nanoscience and Nanotechnology, 2017, 17, 1579-1585.	0.9	3
101	A Primer on Photovoltaic Generators. Springer Series in Materials Science, 2018, , 63-90.	0.4	3
102	A Primer on Thermoelectric Generators. Springer Series in Materials Science, 2018, , 11-43.	0.4	3
103	Modelling the simultaneous increase of the conductivity and the Seebeck coefficient in highly B-doped nc-Si. Materials Today: Proceedings, 2019, 8, 706-712.	0.9	3
104	On the Influence of the Cottrell Atmosphere on the Recombination Losses at Grain Boundaries in Polycrystalline Silicon. Springer Proceedings in Physics, 1989, , 115-121.	0.1	3
105	Thermodynamic Efficiency, Power Output and Performance Indices of Classic and Nanostructured Thermoelectric Materials. Journal of Nanoengineering and Nanomanufacturing, 2011, 1, 63-70.	0.3	3
106	Interfacial issues in the design and making of solid-state chemical sensors. Sensors and Actuators B: Chemical, 1995, 24, 266-269.	4.0	2
107	Surface microcharacterization of silicon wafers by the light-beam-induced current technique in the planar configuration and by attenuated total reflection spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 579-585.	0.6	2
108	Adsorption equilibria and kinetics of H2 at nearly ideal (2×1)Si(100) inner surfaces. Surface Science, 2010, 604, 1215-1220.	0.8	2

#	Article	IF	CITATIONS
109	A special issue on silicon and silicon-related materials for thermoelectricity. European Physical Journal B, 2015, 88, 1.	0.6	2
110	Thermoelectric conversion in tandem thermoelectric-photovoltaic applications. , 2015, , .		2
111	Boron Diffusion in Silicon in the Presence of Grain Boundaries and Voids. Materials Today: Proceedings, 2015, 2, 583-587.	0.9	2
112	A Monte Carlo Study on the Effect of Energy Barriers on the Thermoelectric Properties of Si. Energy Harvesting and Systems, 2016, 3, 323-328.	1.7	2
113	Hybrid Solar Harvesters: Technological Challenges, Economic Issues, and Perspectives. Springer Series in Materials Science, 2018, , 137-151.	0.4	2
114	Hybrid Photovoltaic–Thermoelectric Generators: Materials Issues. Springer Series in Materials Science, 2018, , 103-116.	0.4	2
115	Solar Thermoelectric Generators. Springer Series in Materials Science, 2018, , 45-61.	0.4	2
116	Modulation of charge transport properties in poly(3,4-ethylenedioxythiophene) nanocomposites for thermoelectric applications. Journal Physics D: Applied Physics, 2018, 51, 034002.	1.3	2
117	Early Career Researchers Present Their Latest Work at the Virtual Conference on Thermoelectrics 2020. ACS Applied Energy Materials, 2020, 3, 10278-10281.	2.5	2
118	Modeling of aerosol-assisted chemical vapor co-deposition of NiO and carbon nanotubes. European Physical Journal Special Topics, 1999, 09, Pr8-741-Pr8-747.	0.2	2
119	<l>A Special Issue on</l> Nanoengineered Silicon: Technology and Applications. Science of Advanced Materials, 2011, 3, 297-300.	0.1	2
120	Temperature-dependent activation energy for polaronic conduction in copper-doped zinc phosphate glasses. Physica Scripta, 1988, 38, 92-99.	1.2	1
121	Preparation, Micromorphology and Stability of Tin Dioxide Thin Films. Solid State Phenomena, 1996, 51-52, 435-440.	0.3	1
122	Interaction of Small Molecules with Silicon Surfaces. Solid State Phenomena, 2001, 85-86, 337-352.	0.3	1
123	Dynamic barrier height modulation analysis of metal–insulator–semiconductor junctions built on silicon surfaces modified by covalent organic layers. Surface Science, 2007, 601, 2845-2849.	0.8	1
124	A tool for the spectroscopic investigation of hydrogen–silicon interaction. Surface and Interface Analysis, 2010, 42, 1307-1310.	0.8	1
125	Effect of Nanocavities on the Thermoelectric Properties of Polycrystalline Silicon. Materials Research Society Symposia Proceedings, 2011, 1329, 1.	0.1	1
126	Thermoelectric Properties of p and n-type Nanocrystalline Silicon Nanowires with High Doping Levels. Materials Research Society Symposia Proceedings, 2012, 1408, 67.	0.1	1

#	Article	IF	CITATIONS
127	Using evidence from nanocavities to assess the vibrational properties of external surfaces. Journal of Physics Condensed Matter, 2012, 24, 104005.	0.7	1
128	Monte Carlo study of the Electron Transport Properties of an Array of Si Nanocrystals. Materials Today: Proceedings, 2015, 2, 491-496.	0.9	1
129	PdGe contact fabrication on Ga-doped Ge: Influence of implantation-mediated defects. Scripta Materialia, 2018, 150, 66-69.	2.6	1
130	Hybrid Photovoltaic–Thermoelectric Generators: Theory of Operation. Springer Series in Materials Science, 2018, , 91-102.	0.4	1
131	Hybrid Photovoltaic-Thermoelectric Solar Cells: State of the Art and Challenges. , 2017, , 139-181.		1
132	Litho-to-Nano Link. , 2008, , 1890-1900.		1
133	Electrical Behavior of Diffused Impurities in Diamond Single Crystals. Materials Research Society Symposia Proceedings, 1989, 162, 365.	0.1	0
134	Electronic conductivity in copper- and iron-based phosphate glasses exhibiting clustering and spinodal decomposition. Journal of Materials Chemistry, 1993, 3, 1179.	6.7	0
135	Stereochemical random networks. A contribution to a structurally aware hopping theory in oxide glasses. Journal of Non-Crystalline Solids, 1995, 181, 251-260.	1.5	Ο
136	Modelling of Specular Reflection Infrared Spectra of Oxide Films for Microstructural Analysis. Solid State Phenomena, 1996, 51-52, 289-294.	0.3	0
137	Final evidence for H termination of HF-treated Si surfaces: a comparative study by high-energy and vibrational spectroscopies. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 73, 240-243.	1.7	0
138	Sputter-induced trap states at oxidized and grafted silicon surfaces: A comparative study. Thin Solid Films, 2009, 517, 1944-1948.	0.8	0
139	Electric power output optimization in Seebeck generators: Beyond high ZT. , 2012, , .		Ο
140	Biased Diffusion and Rectified Brownian Motion at the Nanoscale Driving Mobile Sensing Automata for the Early Diagnosis of Endogenous Diseases. , 2012, , 1-25.		0
141	Nano and Giga Challenges in Electronics Photonics and Renewable Energy (NGC2011) Moscow-Zelenograd, Russia, September 12-16, 2011. Nanoscale Research Letters, 2012, 7, 326.	3.1	Ο
142	Effect of the Annealing on the Low-Temperature Charge Transport Properties of Heavily Boron-Doped Nanocrystalline Silicon Films for Thermoelectric Applications. Energy Harvesting and Systems, 2016, 3, 329-333.	1.7	0
143	<i>A Special Section on</i> Thermoelectrics. Journal of Nanoscience and Nanotechnology, 2017, 17, 1543-1546.	0.9	0
144	Photovoltaic–Thermoelectric–ThermodynamicÂCo-Generation. Springer Series in Materials Science, 2018, , 117-136.	0.4	0

#	Article	IF	CITATIONS
145	Nanoengineered Silicon: Technology and Applications. Science of Advanced Materials, 2011, 3, 301-311.	0.1	0
146	Nanosilicon and thermoelectricity. , 2017, , 555-574.		0
147	Nanosilicon and thermoelectricity. Series in Materials Science and Engineering, 2017, , 555-574.	0.1	0